Will the PID control survive within Industry 4.0?

M. Huba, K. Zakova and P. Bistak UAMT FEI STU Bratislava, Slovakia

Stretnutie katedier, Praha, September 2018

(E)

- To discuss main problems of automated PID control design
- To show some recent significant achievements in this field
- To analyze possible development in the area
- To point out new trends in the PID control framework including:
 - requirement on the controller tuning starting with appropriate plant modeling & identification,
 - magic of integral models,
 - integrated controller & filter optimization,
 - performance and robustness evaluation,
 - conclusions for the future,

and to relate these aspects to the alternative approaches

(四) (日) (日)

Controller Tuning I. Main requirements

Rules appropriate for education and practice (Skogestad, 2003) should be:

- well motivated,
- preferably model-based,
- analytically derived,
- Isimple and easy to memorize and
- Source well on a wide range of processes.

Besides of this (Skogestad, 2006), controller tuning should enable achieving trade-off between:

- (i) fast speed of response, good disturbance rejection,
- (ii) stability and robustness, less input usage and
- (iii) less sensitivity to measurement noise.

The performance requirements should be flexibly modifiable in a broad range

Controller Tuning II. Early methods

Analytical tuning - double real dominant pole (Oldenoburg and Sartorius, 1944)

Experimental approach - Ziegler and Nichols (1942)

finding the optimal solution by experimentally sweeping all relevant tunings:

- solved originally for optimal disturbance response,
- for quarter amplitude damping,
- by a model-based approach approximation of the setpoint step response by IPDT plant-asymptote by the inflection point,
- simple and easy to memorize results,
- works well on a wide range of processes.

Main ideas of these approaches generalized by the PID_n^m control (2018) and Performance Portrait Method - PPM (2009-2018) are now joined together, supported by magic of integral control

PID control framework Starting facts

- PID control represents the most frequently used control technology in practice (Astrom-Hagglund, 2006)
- The derivative action
 - is the most difficult to tune (Visioli, 2006)
 - is not appropriate for noisy processes (Astrom-Hagglund, 2006)
 - does not yield a significant improvements for time-delayed systems (Astrom-Hagglund, 2006)
 - thus, it is mostly switched-off (Visioli, 2006).
- As documented e.g. by the 3rd IFAC conference on PID control in Gent 2018, recent works in this area deal mostly
 - with robustness problems,
 - with long time-delays,
 - with noise filtration,
 - with nonlinear systems control,
 - and dominantly with the fractional order (FO) controllers.

・ 同 ト ・ ヨ ト ・ ヨ ト

PID control framework What are the motivations for FO-PID?

- New degrees of freedom "to get additional two knobs for controller tuning" (Tepljakov et all, 2018) = no satisfaction with performance and robustness of traditional PID control.
- Simplified (automated) plant modeling, identification, optimal & robust controller design.
- Heuristic optimization techniques, multi-objective cuckoo search, gravitational search algorithm combined with the Cauchy and Gaussian mutation, particle swarm optimization, gravitational search algorithm, bacterial-foraging chemotaxis gravitational search algorithm, etc.
- However, the simplifications hold just for the first design phases, because the FO controllers have finally be approximated and implemented by **high-order filters**.
- Fashion wave kicked off by our compatriots I. Podlubny in IEEE Trans. AC 44, 1, 1999 nearly 2500 citations...).

Performance Portrait Method

- PP = information about loop performance corresponding to setpoint and disturbance step responses evaluated and stored over a grid of (possibly normalized) loop parameters
- Extension to the (analytical) Parameter Space method (Ackermann et al., 2002)
- The only known numerical optimization method ensuring **re-usability**
- Appropriate for both the nominal and robust controller design (interval plant parameters)
- Based on new (shape related) performance measures
- No convergence problems
- More at https://www.researchgate.net/project/ Performance-Portrait-Method

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

PID^m control:

- A generalization of the proportional-integral-derivative control by possibly higher integer-order derivative action up to the degree m and by n ≥ mth order low-pass binomial filters
- An alternative to the fractional-order PID control aimed at increasing the loop performance and robustness
- Overcoming traditional dogma that the derivative action is unsuitable for noisy systems with time delays and that it is difficult to tune
- Evaluation based on new (shape related) performance measures and on performance evaluation in the **Speed of transients** versus **excessive input/output changes** plane
- No convergence problems
- More at https:

//www.researchgate.net/project/PIDmn-Control

2DOF PID^m Control Considered controllers with $m \in [0, 5]$

Possible extensions of **PI** control by **Derivative Actions**

• **2DOF PID**^m controller + prefilter

$$C^{m}(s) = K_{c}\left(1 + \frac{1}{T_{i}s}\right) + T_{D1}s + T_{D2}s^{2} + ... + T_{Dm}s^{m}$$

$$F_{p}(s) = \frac{1+b_{0}T_{i}s+b_{1}T_{i}T_{D1}s^{2}+b_{2}T_{i}T_{D2}s^{3}+...+b_{m}T_{i}T_{Dm}s^{m+1}}{1+T_{i}s+T_{i}T_{D1}s^{2}+T_{i}T_{D2}s^{3}+...+T_{i}T_{Dm}s^{m+1}}$$

(1)

伺下 イヨト イヨト

- PI No filtration at high frequencies!
- Choice of *m* the 3rd degree of freedom in controller design.
- How to tune PID^m with respect to the plant dynamics?
- How to tune PID^m with respect to the noise impact?
- How to implement it = to choose an appropriate filter?

Noise attenuation filters

The simplest binomial filters = the inevitable component of a rigorous control design

• The 4th DOF in controller design

$$Q_n(s) = \frac{1}{(T_f s + 1)^n}; \ n = 1, 2, \dots$$
 (2)

- PID_n^m(s) = C^m(s)Q_n(s) Q_n(s) represents an inevitable part of the controller design
- $PI => PID_n^0$, $PID => PID_n^1$, $PIDD^2 => PID_n^2$

Figure: Considered control structure, δ - measurement noise

PID^m control Optimal tuning for an ideal controller for IPDT plant model $S(s) = K_{sp}e^{-T_{dp}s}/s$

 T_e - equivalent filter delay

$$K_o = K_c K_{sp} (T_{dp} + T_e); \ \tau_{io} = \frac{T_i}{T_{dp} + T_e}; \ \tau_{jo} = \frac{T_{Dj}}{(T_{dp} + T_e)^j}$$
 (3)

Table: Optimal PID^{*m*} parameters derived by the multiple real dominant pole method, $m \in [0, 5]$

	m = 0	m = 1	<i>m</i> = 2	<i>m</i> = 3	<i>m</i> = 4	<i>m</i> = 5
Ko	0.4612	0.78361	1.08268	1.37114	1.65330	1.93117
$ au_{io}$	5.8284	3.73205	3.00000	2.61803	2.37980	2.21527
τ_{1o}	0	0.26289	0.37500	0.43673	0.47525	0.50120
τ_{2o}	0	0	0.04167	0.07492	0.09972	0.11843
$ au_{3o}$	0	0	0	0.00474	0.01020	0.01526
$ au_{4o}$	0	0	0	0	0.00042	0.00105
τ_{5o}	0	0	0	0	0	0.00003

Table: Equivalent time delays ratios T_f/T_e , $m \in [0, 5]$, $n \in [m, 7]$

m	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	<i>n</i> = 7
0	0.5690	0.3608	0.2647	0.2092	0.1729	0.1474	0.1284
1	0.7887	0.3943	0.2800	0.2180	0.1787	0.1514	0.1314
2	-	0.5000	0.3000	0.2279	0.1847	0.1555	0.1344
3	-	-	0.3618	0.2412	0.1917	0.1599	0.1374
4	-	-	-	0.2816	0.2012	0.1651	0.1408
5	-	-	-	-	0.2297	0.1722	0.1449

- (回) (三) (三) (三) (三)

Integrated tuning of a PID_n^m Mixed loop dynamics - $T_{dp} > 0$, $Q_n(s)$

Filter design = specifying *n* and $T_e > 0$ - an additional dead time corresponding to filtration added to the plant model dead time T_{dp}

$$T_t = T_{dp} + T_e \tag{4}$$

Tuning procedure:

- **(**) Choose $T_e > 0$ corresponding to a required filtration degree;
- For m > 0 specify by the MRDP method the PID^m controller parameters as a function of T_t, Q_n(s) = 1;
- One of the order of the orde
- By considering T_d = 0 and Q_n(s) = 1/(1 + T_fs)ⁿ derive a delay equivalence T_f = f(n, T_e) based on an equal dominant pole position and specify the filter time constant T_f; check if T_f >> T_s the available sampling period
- By experimentally evaluating for different T_e, m, n, choose the optimal controller parameters guaranteeing the optimal loop performance.

 PID_n^m , n = m + 2 - IPDT noise characteristics external noise "Uniform Random Number" with $|\delta| \le 0.1$, $T_s = 0.001$, $T_{dp} = 1$

Shape Related Performance Specifications Deviations from iput and output ideal one-pulse (1P) shapes

• *TV*₁ - **Deviations from 1P shapes** at the plant input (all step responses) and output (disturbance response)

$$TV_1(y_d) = \sum_i |y_{i+1} - y_i| - |2y_m - y_\infty - y_0| ; y_m = max(y)$$

• $TV_1(y_d) = 0$ just for strictly 1P response, else $TV_1(y_d) > 0$.

- Traditional robustness measures M_s and M_t
- User may specify the model parameters K_{sp} and T_{dp} and the controller parameters m, n, T_e
- Robust stability stability areas for a given T_d, K_s as functions of K_{sp} and T_{dp}
- **Robust performance** changes of the working point in the plane $\xi = TV_1(u_d), \eta = IAE_d^k$ as functions of an uncertain parameter $x_i, i = 1, 2, ..., N$
- Performance sensitivity:

$$S_d(u_d) = \sum_{i=1}^{N-1} \sqrt{(\xi_i - \xi_{i+1})^2 + (\eta_i - \eta_{i+1})^2}$$

$$\xi_i = TV_1(u_{di}), \eta_i = IAE_{di}^k)$$
(5)

(4月) (4日) (4日) 日

• Ideally, $S_d(u_d) = 0$

Robust Stability PID_2^0 $\tau_f = T_f/T_d$ - normed filter time constant enlarges stability area

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Stability PID_3^1 $\tau_f = T_f/T_d$ - normed filter time constant

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Stability PID_4^2 $\tau_f = T_f/T_d$ - normed filter time constant

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Stability PID_5^3 $\tau_f = T_f/T_d$ - normed filter time constant

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Stability PID_6^4 $\tau_f = T_f/T_d$ - normed filter time constant

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Stability PID₇⁵ $\tau_f = T_f/T_d$ - normed filter time constant

• T_d, K_s and T_{dp}, K_{sp} - plant and model dead time and gain

M. Huba, K. Zakova and P. Bistak

Robust Performance $S(s) = K_s e^{-T_d s}/(s+a)$ Optimal *IAE*_s for PID⁰-PID² control of FOTD system

Figure: In a broad range of aT_d values (increasing with *m*), FOTD system may be controlled by simplified controllers derived for IPDT models

Robust Performance $S(s) = K_s e^{-T_d s} / (s + a)$ Uncertainty - internal plant feedback gain $a \in [-0.2, 0.2]$, $T_e = 0.8T_{dp}$, $T_{dp} = 1$, $K_s = 1$

M. Huba, K. Zakova and P. Bistak Will the PID control survive within Industry 4.0?

Robust Performance $S(s) = K_s e^{-T_d s} / (s + a)$ Uncertainty - internal plant feedback gain $a \in [-0.2, 0.2]$, $T_e = 0.8T_{dp}$, $T_{dp} = 1$, $K_s = 1$

M. Huba, K. Zakova and P. Bistak

Will the PID control survive within Industry 4.0?

Э

- Several modes of heat transfer (radiation and convection)
- Astrom, Panagopoulos, Hagglund showed that it is enough to consider the fastest mode (Design of PI Controllers based on Non-Convex Optimization, Automatica 34, 5, 1998)
- However, they have not observed that it is enough to approximate the fastest mode by IPDT model.
- No re-usability of such traditional optimization approaches.
- Simplified (automated) plant modeling, identification, optimal & robust controller design by FO models.
- However, the simplifications hold just for the first design phases, because the FO controllers have finally to be approximated by high-order filters.

(1日) (日) (日)

Experimental verification Detail of a step response - short measurement is enough

Figure: Approximation of an initial segment of a thermal plant step response by the IPDT model yielding $K_{sm} = 0.01$, $T_{dm} = 5.56s$, $r \ge 1000$

M. Huba, K. Zakova and P. Bistak Will the PID control survive within Industry 4.0?

Experimental verification Close loop step responses with a periodical disturbance - PID₀⁰ and PID₇⁵ with $T_e = T_d$

M. Huba, K. Zakova and P. Bistak Will the PID control survive within Industry 4.0?

æ

Illustrative Example Evaluation of the speed of transients and of the excessive control effort

Figure: Mean performance measures - disturbance step responses evaluated for $T_{dp} = \{4.5, 5, 5.5, 6, 6.5\}$ s with three different values of T_e

Illustrative Example Cost function $J_k = IAE_d^k TV_1(u_d)$ combining speed of transients & excessive control effort

Figure: Mean values of the cost function $J_k = IAE_d^k TV_1(u_d)$ for k = 1and k = 5 calculated for $T_{dp} = \{4.5, 5, 5.5, 6, 6.5\}$ s with three different values of T_e

Conclusions I.

- PID^m_n control = modifying the PI and PID control by higher order derivative actions.
- Together with low pass filters $Q_n(s)$ it introduces the **3rd and 4th degrees of freedom** devoted to speed of transients and measurement noise filtration.
- The use of higher order filters enables to speed up transients by simultaneously decreasing the corresponding control effort also in a noisy environment.
- Simple integrated tuning method for the introduced *n*th order binomial filters and controllers with *m*th order derivative.
- It may be further refined by the performance portrait method to stress the setpoint or disturbance responses.
- Performance portraits kept in central repositories they may be repeatedly used via networks.

・ロン ・回 と ・ ヨ と ・ ヨ と

Conclusions II.

- Use of higher order derivatives increases performance robustness and thus allows to use simple integral models also for systems with much more complex dynamics.
- The traditional loop optimization becomes useless.
- Use of simple integral models also significantly simplifies the plant identification.
- Lower number of parameters = better conditioned calculations
- Lower number of determined parameters = use of much shorter step responses, without necessity to reach a steady state (applicable also to unstable systems, adaptive control).
- A paradigm shift documented already today by Model-Free Control (Fliess et al.) and Advanced Disturbance Rejection Control (Gao et al.) will yet accelerate...
- Similar features as in PID^m_n control may be found in IMC and Disturbance Observer based control.

Thank you for your attention. And do not forget to visit http://iolab.sk/ifac/

물 제 문 제 문 제

æ