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1 Overview

In Section 2, we provide additional details for the CdSprites+ dataset. In Section 3, we describe the
technical information and detailed results for the experiments presented in the paper and Section 4
reports the reproduced results from original papers using our toolkit.

2 CdSprites+ dataset statistics

The presented version of the benchmark dataset comprises 5 different levels of difficulty, where each
level varies in the number of included features (see Table 1 for their overview). The default size of
the dataset is depicted in Table 1 for each level, although the user can easily generate a larger set of
the data. The scripts for calculation of the cross- and joint- coherency accuracies use separate batches
of testing data provided in the toolkit.

In all levels, the source of noise in the images is their random position and rotation - in levels 1-4, the
shapes are located around the whole image with a variance of 25 pixels along both x and y axes. In
Level 5, the shapes are shifted in random quadrants where their position also varies with a variance
of 8 pixels. The positions are configured so that the whole shapes are always fitting the image. In
Levels 2-5 where we vary the size, the proportion of the small objects to the big objects is 1:5.

You can also see a PCA visualization of the CdSprites+ Level 5 dataset in Fig. 4.

Table 1: Statistics of the CdSprites+ benchmark dataset. We show the number of train/validation
samples and the number of various shapes, colours, object poses (meaning quadrants which are
distinguished in captions) and backgrounds used in each difficulty level. The text captions only
describe features that vary (e.g. in level 1, the text descriptions only include the shape name). The
colours and backgrounds are all textured when they vary.

Level Train Samples Validation Samples Shapes Sizes Colours Positions Backgrounds

1 67 500 7 500 3 1 1 1 1
2 108 000 12 000 3 2 1 1 1
3 270 000 30 000 3 2 5 1 1
4 540 000 60 000 3 2 5 4 1
5 864 000 96 000 3 2 5 4 2



Table 2: Training and inference times for each model trained on our CdSprites+ dataset. The models
were trained for 150 epochs on Levels 1-2 and for 250 epochs on Levels 3-5, we thus show these
times separately. We show the mean values over all seeds and different latent dimensionalities, the
standard deviation is shown as ±.

Model Per epoch (s) Per training (min)
(Levels 1-2)

Per training (min)
(Levels 3-5)

Inference time (s)

MMVAE 203 ±2 525 ±8 860 ±10 152 ±6
MVAE 150 ±20 397 ±25 645 ±32 135 ±19
MoPoE 127 ±12 324 ±9 542 ±10 126 ±11
DMVAE 200 ±3 500 ±6 841 ±7 148 ±8

2.1 Using character-wise embeddings

We choose to use character-wise embeddings for CdSprites+ rather than word embeddings. While this
choice was made to increase the difficulty of the text modality in our dataset, character embeddings
have been recently used also in several other works as this approach brings specific advantages.

Firstly, character-wise embedding does not require a pre-defined vocabulary of possible input words.
This can be useful e.g. in incremental learning scenarios where the whole vocabulary is not known
prior to training beginning. Secondly, the model can be tested for robustness after training by inputting
sentences with misspelt words (e.g., “sqaare” instead of “square”) to see if the model can generate
correct images. With word-level embedding, this is not possible as replacing entire words will change
the feature or create a nonsensical query (e.g., “left square” instead of “blue square”).

Please note that we expect the users to use the same encoder and decoder networks (i.e. character
transformer networks) for the CdSprites+ benchmark to provide a restricted and fair comparison to
other models. Should the users want to use CdSprites+ outside our toolkit for their custom evaluation,
they can as well use word-level embeddings as we provide raw strings for the CdSprites+ text
modality.

3 Benchmark study results

Here we provide the specific training configuration and hyperparameters used for the experiments on
the CdSprites+ dataset as listed in the paper. We also report the detailed results for hyperparameter
grid search in terms of the cross- and joint-generation accuracies.

3.1 Training configuration

All our experiments were trained with the GeForce GTX 1080 and NVIDIA Tesla V100 GPU
cards, the mean computation times for training and inference are shown in Table 2. We used the
Adam optimizer, the learning rate of 1e−4 and all experiments were repeated for 5 seeds (we report
standard deviations for the results in the tables). We trained for 150 epochs for Levels 1 and 2 and
for 250 epochs in the case of Levels 3-5. In the hyperparameter grid search, we varied the latent
dimensionality (16, 24, 32) for all 5 dataset levels and the MVAE, MMVAE and MoPoE models. In
the case of DMVAE, the latent dimensionality was different as there are private (modality-dependent)
and shared latents. We thus chose different values for the comparison. We used a fixed value of 10
for both private latents and varied the shared latents with values 10, 16 and 24. In Tables 1-5, we
show this as the total number of latent dimensions, i.e. 30 (10 shared and 2 × 10 private), 36 (16
shared and 2× 10 private) and 46 (24 shared and 2× 10 private).

We used the default training dataset size and validation split as reported in the statistics Table 1. In
Tables 3, 4, 5, 6 and 7, we show results for the MVAE, MMVAE, DMVAE and MoPoE models and
the compared latent dimensionalities. Standard deviations over 5 seeds are shown in brackets.
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Table 3: Level 1 comparison of accuracies for the four evaluated models trained on our CdSprites+
dataset. Strict refers to percentage of completely correct samples (sample pairs in joint generation),
Feats shows the average percentage of correct features (Level 1 has only 1 feature and Feats and Strict
are thus the same) and Letters shows the mean percentage of correctly reconstructed letters.(Dim) is
the latent space dimensionality.

Model (Dim) Txt→Img
Strict %

Txt→Img
Feats %

Img→Txt
Strict %

Img→Txt
Feats %

Img→Txt
Letters %

Joint
Strict %

Joint
Feats %

MMVAE (16-D) 47 (14) N/A 64 (3) N/A 88 (2) 17 (10) N/A
MVAE (16-D) 52 (3) N/A 63 (8) N/A 86 (2) 5 (9) N/A

DMVAE (30-D) 33 (4) N/A 4 (5) N/A 25 (2) 4 (6) N/A
MoPoE (16-D) 33 (3) N/A 10 (17) N/A 26 (7) 16 (27) N/A

MMVAE (24-D) 55 (15) N/A 42 (3) N/A 31 (12) 0 (0) N/A
MVAE (24-D) 55 (4) N/A 61 (3) N/A 82 (1) 3 (2) N/A

DMVAE (36-D) 36 (1) N/A 3 (3) N/A 21 (2) 9 (13) N/A
MoPoE (24-D) 35 (3) N/A 4 (2) N/A 24 (6) 1 (1) N/A

MMVAE (32-D) 48 (3) N/A 36 (2) N/A 26 (2) 0 (0) N/A
MVAE (32-D) 53 (5) N/A 60 (2) N/A 82 (2) 1 (1) N/A

DMVAE (46-D) 34 (2) N/A 3 (2) N/A 20 (9) 0 (0) N/A
MoPoE (32-D) 36 (5) N/A 2 (1) N/A 23 (7) 0 (0) N/A

3.2 Used architecture

For all evaluated models, we used the standard ELBO loss function with the β parameter fixed to 1.
For the MVAE Wu & Goodman (2018) model, we used the sub-sampling approach where the model
is trained on all subsets of modalities (i.e. images only, text only and images+text). For the image
encoder and decoder, we used 4 fully connected layers with ReLU activations. In the case of the text,
we used a Transformer network with 8 layers, 2 attention heads, 1024 hidden features and a dropout
of 0.1.

3.3 Evaluation metrics

After training, we used the script for automated evaluation (provided in our toolkit) to compute the
cross- and joint-coherency of the models. For cross-coherency, we generated a 10000-sample test
dataset using the dataset generator and used first the images, and then captions as input to the model
to reconstruct the missing modality. For joint coherency, we generated 1000 traversal samples over
each dimension of the latent space (i.e. 32000 samples for a 32-D latent space) and fed these latent
vectors into the models to reconstruct both captions and images.

For both the cross- and joint-coherencies, we report the following metrics: Strict, Feat, and Letters
to provide more information on what the models are capable to do. In the first ( Strict) metrics, we
considered the text sample as accurate only if all letters in the description were 100 % accurate, i.e.
we did not tolerate any noise. For the image outputs, we considered the images as correct only if
all the attributes for the given difficulty level could be detected using our pre-trained classifiers (i.e.
correct classification for the shape, colour, size, position or background). For joint coherency, we
considered the generated pair as correct only when both the image and captions fulfilled these criteria
and were semantically matching.

For the feature-level metrics, we calculated the percentage of correctly reconstructed/generated
features (e.g. whole words or image attributes such as shape) and reported the mean percentage of
correct features per sample. For the image-caption cross-generation accuracy, we also calculated the
average percentage of correct letters per output sample.

In the following section, we report the mean accuracies for both cross- and joint-coherency - these
numbers describe the proportion of the correct outputs to all outputs.
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Table 4: Level 2 comparison of accuracies for the 4 models trained on our CdSprites+ dataset. Strict
refers to the percentage of completely correct samples (sample pairs in joint generation), Feats
shows the average percentage of correct features (Level 2 has 2 features) and Letters shows the mean
percentage of correctly reconstructed letters.(Dim) is the latent space dimensionality.

Model (Dim) Txt→Img
Strict %

Txt→Img
Feats %

Img→Txt
Strict %

Img→Txt
Feats %

Img→Txt
Letters %

Joint
Strict %

Joint
Feats %

MMVAE (16-D) 18 (4) 0.8 (0.1)/2 41 (20) 1.4 (0.2)/2 85 (4) 3 (3) 0.6 (0.1)/2
MVAE (16-D) 16 (1) 0.8 (0.0)/2 55 (27) 1.5 (0.3)/2 91 (6) 1 (1) 0.3 (0.3)/2

DMVAE (30-D) 15 (2) 0.8 (0.0)/2 4 (1) 0.4 (0.0)/2 30 (2) 0 (0) 0.2 (0.1)/2
MoPoE (16-D) 10 (3) 0.8 (0.0)/2 8 (7) 0.7 (0.1)/2 40 (4) 1 (1) 0.2 (0.1)/2

MMVAE (24-D) 17 (5) 0.4 (0.0)/2 16 (0) 0.4 (0.0)/2 40 (2) 1 (1) 0.2 (0.0)/2
MVAE (24-D) 16 (3) 0.4 (0.0)/2 52 (9) 0.8 (0.0)/2 86 (1) 5 (6) 0.3 (0.0)/2

DMVAE (36-D) 18 (2) 0.9 (0.0)/2 5 (1) 0.4 (0.0)/2 24 (1) 0 (0) 0.2 (0.2)/2
MoPoE (24-D) 8 (3) 0.8 (0.0)/2 13 (3) 0.8 (0.1)/2 35 (3) 1 (1) 0.5 (0.1)/2

MMVAE (32-D) 17 (1) 0.4 (0.0)/2 16 (0) 0.5 (0.0)/2 43 (2) 0 (0) 0.1 (0.0)/2
MVAE (32-D) 16 (4) 0.8 (0.1)/2 40 (13) 1.8 (0.1)/2 87 (1) 11 (9) 0.8 (0.0)/2

DMVAE (46-D) 17 (1) 0.8 (0.0)/2 3 (1) 0.4 (0.1)/2 24 (2) 0 (0) 0.1 (0.1)/2
MoPoE (32-D) 7 (2) 0.8 (0.0)/2 10 (8) 0.8 (0.1)/2 33 (1) 0 (0) 0.3 (0.2)/2

Table 5: Level 3 comparison of accuracies for the 4 models trained on our CdSprites+ dataset. Strict
refers to the percentage of completely correct samples (sample pairs in joint generation), Feats
shows the average percentage of correct features (Level 3 has 3 features) and Letters shows the mean
percentage of correctly reconstructed letters.(Dim) is the latent space dimensionality.

Model (Dim) Txt→Img
Strict %

Txt→Img
Feats %

Img→Txt
Strict %

Img→Txt
Feats %

Img→Txt
Letters %

Joint
Strict %

Joint
Feats %

MMVAE (16-D) 6 (2) 1.2 (0.2)/3 2 (3) 0.6 (0.2)/3 31 (5) 0 (0) 0.4 (0.1)/3
MVAE (16-D) 6 (0) 1.3 (0.0)/3 22 (12) 2.1 (0.1)/3 85 (3) 0 (0) 0.5 (0.1)/3

DMVAE (30-D) 4 (0) 1.2 (0.0)/3 0 (0) 0.4 (0.1)/3 22 (2) 1 (1) 0.5 (0.1)/3
MoPoE (16-D) 6 (1) 1.6 (0.0)/3 0 (0) 0.1 (0.1)/3 21 (5) 0 (0) 0.0 (0.0)/3

MMVAE (24-D) 4 (3) 1.2 (0.3)/3 1 (1) 0.8 (0.2)/3 31 (6) 0 (0) 0.3 (0.0)/3
MVAE (24-D) 7 (1) 1.3 (0.0)/3 45 (3) 2.4 (0.0)/3 91 (1) 0 (0) 0.6 (0.0)/3

DMVAE (36-D) 3 (2) 1.1 (0.1)/3 0 (0) 0.2 (0.0)/3 18 (1) 0 (0) 0.1 (0.0)/3
MoPoE (24-D) 7 (4) 1.3 (0.1)/3 0 (0) 0.7 (0.1)/3 32 (0) 0 (0) 1.1 (0.1)/3

MMVAE (32-D) 5 (3) 1.1 (0.1)/3 1 (1) 0.6 (0.1)/3 28 (2) 0 (0) 0.0 (0.0)/3
MVAE (32-D) 8 (2) 1.3 (0.0)/3 59 (4) 2.5 (0.1)/3 93 (1) 0 (0) 0.5 (0.1)/3

DMVAE (46-D) 5 (1) 1.1 (0.0)/3 0 (0) 0.1 (0.1)/3 15 (1) 0 (0) 0.1 (0.0)/3
MoPoE (32-D) 8 (2) 1.5 (0.1)/3 0 (1) 0.6 (0.1)/3 28 (1) 0 (0) 0.5 (0.2)/3

Table 6: Level 4 comparison of accuracies for the 4 models trained on our CdSprites+ dataset. Strict
refers to the percentage of completely correct samples (sample pairs in joint generation), Feats shows
the average percentage of correct features (Level 4 has only 4 features) and Letters shows the mean
percentage of correctly reconstructed letters.(Dim) is the latent space dimensionality.

Model (Dim) Txt→Img
Strict %

Txt→Img
Feats %

Img→Txt
Strict %

Img→Txt
Feats %

Img→Txt
Letters %

Joint
Strict %

Joint
Feats %

MMVAE (16-D) 2 (0) 1.6 (0.2)/4 0 (0) 0.4 (0.4)/4 15 (3) 0 (0) 0.1 (0.1)/4
MVAE (16-D) 0 (0) 1.3 (0.0)/4 0 (0) 0.2 (0.3)/4 16 (5) 0 (0) 0.3 (0.6)/4

DMVAE (30-D) 1 (1) 1.4 (0.0)/4 0 (0) 0.5 (0.1)/4 18 (1) 0 (0) 0.5 (0.1)/4
MoPoE (16-D) 3 (1) 1.6 (0.2)/4 0 (0) 0.5 (0.1)/4 16 (3) 0 (0) 0.1 (0.1)/4

MMVAE (24-D) 3 (3) 1.7 (0.4)/4 1 (2) 0.7 (0.4)/4 27 (9) 0 (0) 0.5 (0.2)/4
MVAE (24-D) 4 (1) 1.2 (0.1)/4 0 (1) 2.4 (0.0)/4 14 (1) 0 (0) 0.2 (0.1)/4

DMVAE (36-D) 0 (1) 1.3 (0.0)/4 0 (0) 0.2 (0.0)/4 14 (1) 0 (0) 0.2 (0.0)/4
MoPoE (24-D) 2 (1) 1.4 (0.0)/4 0 (0) 0.7 (0.1)/4 21 (3) 0 (0) 0.1 (0.2)/4

MMVAE (32-D) 1 (1) 1.6 (0.0)/4 0 (0) 0.9 (0.0)/4 21 (0) 0 (0) 0.2 (0.0)/4
MVAE (32-D) 2 (1) 1.1 (0.1)/4 0 (1) 1.1 (0.0)/4 12 (3) 0 (0) 0.4 (0.2)/4

DMVAE (46-D) 1 (1) 1.2 (0.0)/4 0 (0) 0.1 (0.0)/4 14 (1) 0 (0) 0.1 (0.0)/4
MoPoE (32-D) 4 (0) 1.7 (0.1)/4 0 (0) 0.5 (0.3)/4 20 (3) 0 (0) 0.2 (0.2)/4
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Table 7: Level 5 comparison of accuracies for the 4 models trained on our CdSprites+ dataset. Strict
refers to the percentage of completely correct samples (sample pairs in joint generation), Feats
shows the average percentage of correct features (Level 5 has 5 features) and Letters shows the mean
percentage of correctly reconstructed letters. (Dim) is the latent space dimensionality.

Model (Dim) Txt→Img
Strict %

Txt→Img
Feats %

Img→Txt
Strict %

Img→Txt
Feats %

Img→Txt
Letters %

Joint
Strict %

Joint
Feats %

MMVAE (16-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.4 (0.2)/5 16 (0) 0 (0) 0.7 (0.4)/5
MVAE (16-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.0)/5 27 (1) 0 (0) 0.2 (0.2)/5

DMVAE (30-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.1)/5 18 (2) 0 (0) 0.7 (0.1)/5
MoPoE (16-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.3 (0.2)/5 15 (1) 0 (0) 0.5 (0.7)/5

MMVAE (24-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.1)/5 17 (2) 0 (0) 0.5 (0.1)/5
MVAE (24-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.0)/5 25 (3) 0 (0) 0.3 (0.0)/5

DMVAE (36-D) 1 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.1)/5 14 (0) 0 (0) 0.5 (0.1)/5
MoPoE (24-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.7 (0.0)/5 17 (1) 0 (0) 1.0 (0.0)/5

MMVAE (32-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.4 (0.1)/5 15 (0) 0 (0) 0.5 (0.4)/5
MVAE (46-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.6 (0.1)/5 24 (2) 0 (0) 0.6 (0.1)/5

DMVAE (32-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.4 (0.1)/5 14 (1) 0 (0) 0.4 (0.1)/5
MoPoE (32-D) 0 (0) 1.8 (0.0)/5 0 (0) 0.7 (0.3)/5 17 (2) 0 (0) 1.1 (0.1)/5

Figure 1: Results for the MVAE and MMVAE models trained on the MNIST-SVHN dataset using our
toolkit. For MMVAE, we used the DREG objective as proposed by the authors, MVAE was trained
with ELBO. We used the encoder and decoder networks from the original implementations. The top
figures are traversals for each modality, below we show cross-generated samples. The bottom figures
are T-SNE visualizations of the latent space - please note that for MVAE we show samples from the
single joint posterior, while for MMVAE we show samples for both modality-specific distributions.
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Figure 2: T-SNE visualizations for the MVAE model’s (16-D) joint latent space trained on CdSprites+
Level 4. We show the latent space for each of the 4 features (size, shape, position and colour)
individually.

Figure 3: T-SNE visualizations for the MMVAE model’s (24-D) unimodal latent spaces trained on
CdSprites+ level 4. We show the latent space for each of the 4 features (size, shape, position and
colour) individually.
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Figure 4: PCA calculated on the images in our CdSprites+ dataset, Level 5. We show a separate
figure for each of the 5 features (size, shape, position and colour).

Figure 5: Image traversals for the MMVAE and MoPoE models for the CdSprites+ Levels 2 and 4.
Each row is one out of 32 dimensions of the latent space, each column is the single sampled vector
from the traversal range (-6,6).
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Figure 6: Text traversals for the MVAE and MMVAE models for the CdSprites+ Level 4. Each row
is one out of 32 dimensions of the latent space, each column is the single sampled vector from the
traversal range (-6,6). Note that we did not set the desired length of the text output, the model thus
always generated the maximum number of characters.

3.4 Detailed Results

In Tables 3, 4, 5, 6 and 7, we show the comparison of the MVAE, MMVAE, DMVAE and MoPoE
models on the 5 difficulty levels of the CdSprites+ dataset. Here we varied the latent dimensionality
(16-D to 32-D) with the fixed batch size of 32. The values are the mean cross-generation and
joint-generation accuracies over 5 seeds with the standard deviations listed in brackets. According to
the Strict metrics (with zero noise tolerance, see Sec. 3.3), all models failed in both tasks at Levels
4 and 5. The Feature and Letter accuracies significantly decrease across levels as the complexity
increases. You can see the T-SNE visualizations for the MVAE and MMVAE models trained on Level
4 in Figs. 2 and 3 .

4 Verifying correctness of model implementation

To verify the correctness of our implementation for each model, we have reproduced selected
experiments from the original papers using our toolkit. We provide both the original and our results
below.

4.1 MMVAE

To verify that our implementation of the MMVAE (Shi et al., 2019) model is correct, we reproduced
the experiments using the MNIST-SVHN dataset. We used the same model configuration and
parameters as in the original report, i.e. the Mixture-of-Experts mixing with the DREG training
objective, latent size 20 and 30 samples drawn from the joint posterior and the likelihood scaling for
each modality was adjusted according to the varying dimensionalities. We used the same encoder
and decoder architectures as in the original paper. After training, we calculated the joint- and
cross-coherencies using the adapted original evaluation script (please see the original paper for the
evaluation details). The results are shown in Table 8, the config files for reproducing the experiment
are also provided on our GitHub. Please note that the results in Table 8 are different from those
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Table 8: Reproduced MNIST-SVHN results for the MMVAE model with our multimodal VAE toolkit.
We show the digit classification accuracies (%) of latent variables (MNIST) and (SVHN), and the
probability of digit matching (%) for cross- and joint-generation. For our results, we also show in
brackets the variance of the results calculated over 3 seeds.

Version MNIST SVHN MNIST
→ SV HN

SVHN
→ MNIST

Joint

Original 91.3 68.0 86.4 69.1 42.1
Reproduced (Ours) 87.6 (5.2) 70.4 (4.6) 82.7 (5.2) 72.5 (4.9) 45.3 (3.1)

Table 9: Reproduced FashionMNIST results for the MVAE model with our multimodal VAE toolkit.
We show the estimated marginal log-likelihoods (lower is better). For our results, we also show in
brackets the variance of the results calculated over 3 seeds.

Version logp(x1) logp(x1, x2) logp(x1|x2)

Original -232.535 -233.007 -230.695
Reproduced (Ours) -234.15 (1.52) -233.89 (2.61) -232.56 (3.12)

Table 10: Reproduced PolyMNIST results for the MoPoE model with our multimodal VAE toolkit.
We show the Coherence Accuracy (%) of conditionally generated samples (excluding the input
modality) (1 Mod, 2 Mods, 3 Mods and 4 Mods stand for the number of input modalities) and the
joint coherence (Joint). For our results, we also show in brackets the variance of the results calculated
over 3 seeds.

Version 1 Mod 2 Mods 3 Mods 4 Mods Joint

Original 67 78 80 83 12
Reproduced (Ours) 66 (4) 73 (5) 81 (3) 82 (5) 11 (3)

Table 11: Reproduced MNIST-SVHN results for the DMVAE model with our multimodal VAE
toolkit. We show the probability of digit matching (%) for cross- and joint-generation. For our results,
we also show in brackets the variance of the results calculated over 3 seeds.

Version MNIST → SV HN SVHN → MNIST Joint

Original 88.1 83.7 44.7
Reproduced (Ours) 84.5 (4.7) 82.2 (3.1) 44.9 (3.6)

depicted in the main paper, Table 3. This is because here we unified the training hyperparameters
with the original paper setup. However, we found that setting the likelihood scaling to 1 for both
modalities produces more balanced results (in terms of MNIST/SVHN accuracies) and used thus this
setup for the comparative study.

4.2 MVAE

In the original MVAE paper (Wu & Goodman, 2018), the results are reported in terms of marginal
log-likelihoods. We reproduced the FashionMNIST experiment with a 64-D latent space, batch size
100, and likelihood scaling of 10 for the labels and 1 for the images, as reported in the public code.
The results can be seen in Table 9.

4.3 MoPoE

For verification that the MoPoE model (Sutter et al., 2021) is correct, the reproduction was performed
on the PolyMNIST dataset. Based on the original implementation, we used the 512-D latent space,
Laplace prior distributions, and β = 2.5. After training, we calculated the cross-coherencies
conditioned on 1, 2, 3 or 4 modalities as reported in the paper. The results are shown in Table 10.
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4.4 DMVAE

We reproduced the MNIST-SVHN experiment for the DMVAE model (Lee & Pavlovic, 2021). The
reproduced model configuration included shared latent dimensionality Dimshared = 10, the private
latent dimensionalities were DimMNIST = 1 and for DimSV HN = 4. The used β parameter was
1, and batch size 100. We used the same encoder and decoder networks and an adapted script for
calculating the cross- and joint-coherencies. The results are in Table 11.

References
Mihee Lee and Vladimir Pavlovic. Private-shared disentangled multimodal vae for learning of latent

representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1692–1700, 2021.

Yuge Shi, Brooks Paige, Philip Torr, et al. Variational mixture-of-experts autoencoders for multi-
modal deep generative models. Advances in Neural Information Processing Systems, 32, 2019.

Thomas M. Sutter, Imant Daunhawer, and Julia E Vogt. Generalized multimodal ELBO. In In-
ternational Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=5Y21V0RDBV.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised
learning. Advances in Neural Information Processing Systems, 31, 2018.

10

https://openreview.net/forum?id=5Y21V0RDBV
https://openreview.net/forum?id=5Y21V0RDBV

	Overview
	CdSprites+ dataset statistics
	Using character-wise embeddings

	Benchmark study results
	Training configuration
	Used architecture
	Evaluation metrics
	Detailed Results

	Verifying correctness of model implementation
	MMVAE
	MVAE
	MoPoE
	DMVAE


