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1 Project overview

The goal of the project is finding more accurate camera poses in texture-less
environments, e.g., construction side, see 1.

Figure 1: An example of Eiffage construction

We assume HoloLens device as the main sensor used for the localization
and mapping of the environment. The HoloLens device consist of 4 gray-scale
tracking, 1 RGB and one depth camera. The depth map is available even if the
scene does not contain any significant textures which can be used for accurate
localization. Therefore, we decided to directly align dense point-clouds, i.e., the
map and HoloLens depth-maps in world coordinates, as the final stage of InLoc.

After the consultation with T. Staller we found out that similar strategy was
published at least in [1]. We proposed to extend the current approach by using
FCGF [2] to describe dense point-cloud (recommended as the best descriptor
from ETH group focusing on dense point-cloud alignment) and TEASER++ [3]
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or MAGSAC [4] to robustly estimate the SE(3) transformation between point-
clouds. Recently, it was published on CVPR2021 the PREDATOR [5] for dense
point-cloud alignment. We have also decided to include Robust ICP [6] in our
approach.

In summary, we have running the algorithms:

• FCGF [2] - Fully Convolutional Geometric Features (FCGF) is used to
calculate point cloud feature descriptors.

• TEASER++ [3] - TEASER++ stands for ”truncated least squares esti-
mation and semi definite relaxation”. TEASER++ is used to align point-
clouds. It decouples scale, rotation and translation using invariant mea-
surements and uses truncated least squares to solve them. The scale is
estimated using adaptive voting, rotation is estimated by semi definite
relaxation and translation is again estimated by adaptive voting.

• Overlap PREDATOR [5] - Overlap PREDATOR is a model for pair-
wise point-cloud registration specialized in point-clouds with low overlap
(≤ 30% overlap). Interest points of the point clouds are sampled and their
local neighborhood is described as feature descriptors, these feature de-
scriptors are then matched to establish correspondences, the rotation and
translation is then estimated by robustly minimizing the distance between
correspondences. As PREDATOR focuses on low overlap point clouds it
focuses on sampling interest points mostly in overlap areas.

• Robust ICP [6] - Robust ICP is a robust implementation of the Iterative
Closest Point algorithm with fast convergence.

• Few alignment methods from CVPR2020 were also tested in the past but
we don’t have them running now.

The overview of the development process is in the Figure 2.
At first we wanted to have a Ground Truth measurements of HoloLens pose

in the space to be able test individual methods and their accuracy. Here, we
believe, that may be available datasets for this purpose but we are not aware of
them.

The Figure 15 shows the accuracy of the localization by comparing the final
dense point-cloud alignment with Matterport scan. We have accuracy of 2-3cm
while aligning HoloLens camera poses to Vicon markers and 6-7 cm for point-
cloud alignment. In the publication [7], authors have measured the tracking
error smaller than 2 cm/sec and 2 deg/sec while depth sensor has also about
2cm error on the most distant measured points.
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Figure 2: Proposed development scheme
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The structure of the paper is following:

• Matterport and Vicon alignment - the approach to transform Matterport
to Vicon coordinate system

• HoloLens and Vicon alignment - the approach to obtain ground truth

• Depthmaps alignment - evaluation of previously mentioned point-cloud
alignment methods

2 Matterport and Vicon alignment

We have 3 coordinate systems that we are working with. First, we have the Vi-
con coordinate system in which we meassured the Vicon markers. The Matter-
port point-cloud of the room is in Matterport coordinate system and HoloLens
cameras are in HoloLens world coordinate system. In order to align HoloLens
depth point-clouds with Matterport point-cloud we need to transform both
HoloLens and Matterport coordinate system to Vicon coordinate system.

The Matterport coordinate system was aligned by manualy measuring 8
markers on the floor of the room and matching them with same markers mea-
sured in Vicon using the procrustes method. We leave out gradually 1, 2, 3 and
4 points, align the rest and the alignment errors can be seen in Figure 3

As can be noticed in the histogram in figure 3 there are two clusters of errors.
To further inspect this, we have plotted errors using 4 points to align over all
points marking which point was used for alignment in fig. 4. After further
investigation we noticed that there is large relational error between 5th and 6th
points as can be seen in fig. 5
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Figure 3: Gradually leaving out 1, 2, 3, 4 points out of Matterport to Vicon
alignment and then calculating their error are in the first row. In the second
row results of the Leave One Out error (LOO) can be seen.

5



Figure 4: Alignment errors using 4 points to align.

Figure 5: Error of 5th and 6th points.
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Figure 6: Matterport markers converted to Vicon coordinate system and the
Matterport point-cloud converted to Vicon coordinate system.
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3 HoloLens and Vicon alignment

3.1 Pipeline overview

We will quickly summarize the whole pipeline and then we will look at each
step closely. First, we use the Robust ICP [6] (later in this work referenced to
as R-ICP) to align HoloLens camera poses with Vicon markers. Then filter out
outliers created by errors in Vicon and then we optimize our objective function
to find transformation parameters, that align HoloLens to Vicon even closer.
We run three option of the optimization and for each we run R-ICP [6] on the
resulting point-clouds. The whole pipeline is described in figure 7.

Figure 7: Scheme of the alignment pipeline. The color frames are rep-
resenting the color of the results in following figures.

3.2 Objective function

We have the HoloLens camera poses and Vicon marker poses unaligned. Camera
poses from all HoloLens sensors are taken into consideration. Then HoloLens
camera poses are randomly rotated to help R-ICP converge to the right result
and align them using R-ICP to Vicon markers. (We use 100 random rotations
and then take the rotation with the lowest error (NN distances)).

We found out, that the framerate of HoloLens sensors is irregular (especially
the depth sensor, as can be seen in Figure 9). This leads to the problem that
we cannot assume regular timestamps/framerate in our calculations and we
have to use timestamp steps calculated by subtracting the first timestamp of
the HoloLens PV camera from all HoloLens timestamps. This lead us to the
objective function, see Equation 3.
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Figure 8: Hololens (purple) and Vicon (green) camera/marker poses before any
alignment and after the random rotation and R-ICP. As can be noticed the
Vicon data is much denser (100 FPS) on the contrary from HoloLens sensors we
are getting approximately 15 FPS with the exception of depth camera, that is
1-3 FPS. The Vicon data has a cluster of error position that need to be filtered
out for calculations.

Figure 9: Timestamps of the depth camera and the PV camera.
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Figure 10: Graphical interpretation of equation 3. In practise, because of a
irregular HoloLens framerate, we substitude α τ where τ is t̄k − t̄1.
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VV 2H = Cτ+βV
+RTτ+βti (1)

HV =
1

ρ
STDkH0 − dV (2)

VV 2H −HV = 0 (3)

In this formula we have:

• VV 2H represents Vicon markers shifted info HoloLens sensors

• HV stands for HoloLens camera poses transformed to Vicon

• τ - here τ is t̄k− t̄1. This means that we use directly the time of HoloLens
capture instead of multiples of framerate.

• β - time shift as that HoloLens and Vicon didn’t start recording at the
same time

• Cτ+βV
- Vicon marker origin position in Vicon coordinate system

• Rτ+β - Vicon marker rotation in Vicon coordinate system

• ti - translation between Vicon marker and camera center of HoloLens in
Vicon coordinate system, it differs depending on each sensor

• ρ is a scale of the Vicon vectors onto HoloLens vectors

• S stands for camera rotation in HoloLens coordinate system

• DkH0 represents camera center in HoloLens coordinate system

• dV is the origin of HoloLens coordinate system in Vicon coordinate system.

We know: C,R,D and these parameters are unknown and optimized: t, ρ, S, d, β.

In the graph 12 we can see the function values both initial and optimized.
The value is equal to ∑

(‖f‖2) + 10(‖t‖+ ‖dV ‖) (4)

where

f = Cτ+βV
+RTτ+βti −

1

ρ
STDkH0 − dV (5)

while filtering out the Vicon errors. Vicon errors are filtered by splitting all f
values into two clusters (using kmeans) and picking the cluster with lower errors
to be taken into account. We then optimize the function value over all possible
βs (here we try β from 0 to 100) to determine the best time shift.
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To determine wherever it is beneficial to use dV in the objective function,
we run the optimization for the objective function without dV and thus the
function value changes to: ∑

(‖f ′‖2) + 10‖t‖. (6)

where

f ′ = Cτ+βV
+RTτ+βti −

1

ρ
STDkH0 (7)

We also try to remove HoloLens error in shift and rotation by using a three-
step optimization. In first step we optimize t, ρ, S, then with these optimized
parameters we optimize the HoloLens camera poses (DkH0) and lastly we once
again optimize t, ρ, S. We should see that the values of optimized t are equal
to those in first pass if we found the right β and the drift of HoloLens cameras
distribution is Gaussian. The three-step optimization is unfortunately running
slowly in MATLAB and it took a day to get values for the first two betas. We
are considering rewriting the optimization in CERES. However from the first
two betas we have noticed that t from third pass is not equal to the first pass
t (as can be seen in fig. 11). We then ran the three step optimization only for
the best found beta. The optimized t from the third pass differs from the first
pass as well.

Figure 11: Output t for the first two beta and for the best beta.
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Figure 12: Graph of the function values dependent on β.

The best β is determined to be 57. In Figure 13 we can see examples of
aligned cameras with HoloLens after tuning, using the best β and the parameters
optimized for this β. Errors of the alignment can be seen in figure 14

3.3 Mean error correction

Taking into consideration that HoloLens can have a tracking error we tested
the possibility of improving our results by using a mean error correction. We
calculated distances between aligned HoloLens camera poses and the used the
mean of these distances in the distance calculations (by adding it to transformed
HoloLens).

3.4 Point cloud alignment

We then take HoloLens depth point-clouds and use the same transformation cal-
culated from HoloLens camera poses and Vicon markers to align it to a Matter-
port point-cloud that has been transformed to Vicon. For each point-cloud (X)
we get two matrices AD2O and AC2D to transform the point cloud to HoloLens
world coordinate system. We then get the depth point-cloud transformed to
Vicon by:
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Figure 13: Example of HoloLens PV camera and depth (long throw depth)
sensor aligned with Vicon. Aligned HoloLens cameras are purple, unaligned
HoloLens are yellow, Vicon is green, and turquoise are Vicon markers shifted
by t and matched by time to HoloLens. Red lines represents the errors between
aligned HoloLens and Vicon.

1

ρ
PSTRTiiAD2O AC2D X + T +RV t+ correction (8)

Where ρ is a scale of the Vicon vectors onto HoloLens vectors, P is transfor-
mation matrix obtained from Robust ICP [6], S is camera rotation in HoloLens
coordinate system, Rii is the random rotation and rotation acquired by ICP, T
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is −dV for optimization using dV or a zero vector otherwise.
(dV is the origin of HoloLens coordinate system in Vicon coordinate system),
RV is Vicon marker rotation in Vicon coordinate system. t represents the trans-
lation between Vicon marker and camera center of HoloLens in Vicon coordinate
system it differs depending on each sensor and correction represents the shift
between aligned HoloLens and Vicon (the errors in Figure 13).
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For each result we then run Robust ICP [6] on aligned point-clouds and
apply the calculated transform onto the transformed HoloLens camera poses.
All distances between HoloLens camera poses and Vicon markers can be seen
in fig. 14.
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Figure 14: Distances between all aligned HoloLens camera centres and Vicon
marker centres.

For point-cloud alignment we merge all depth maps obtained from HoloLens,
then we subsample both the HoloLens point cloud and the Matterport point
cloud (we consider every 10th point) and crop Matterport point cloud according
to aligned HoloLens point cloud. This leads to different number of points in
point-clouds for each optimization branch so to give the most objective results,
we normalize the histograms (using the probability function, where the value of
the bin equals to occurrence/sum(occurrences)). We then run Robust ICP [6]
on aligned point-clouds to align them even closer. To measure distances between
both point-clouds we use NN search, all distances can be seen in fig. 15

As can be seen from figures presented the best result is using tuning without
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dV , mean error correction and R-ICP so we have determined these poses to
be ground truth. As mentioned previously HoloLens poses can have a tracking
error up to 2 cm/sec and 2 deg/sec. To fix this error we ran R-ICP on each
HoloLens depth point-cloud separately. Our obtained ground truth point-clouds
can be seen in figures as yellow lines.
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Figure 15: Distances between aligned HoloLens point-clouds and Matterport
point cloud. (Note that the number of points in point-clouds differ as we are
cutting point-clouds accordingly to alignment, thus leading us to normalizing
the histograms (the value of the bin equals to occurrence/sum(occurrences)))

18



-3

-2

-1

0

x

1

2

3

4

y 4

2

0

-2

-4

0.0012858

0.079586

0.11861

0.18467

2.1695

0

1

-6

2

-2

3

-4

-2 0

xy

0
2

2
44

6 0.0012858

0.079586

0.11861

0.18467

2.1695

Figure 16: HoloLens point-clouds colored accordingly to distance of NN in Mat-
terport point-cloud using 3step tuning, mean error correction and R-ICP to
align.
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4 Depthmaps alignment

We have tried several methods for point-cloud alignment: FCGF[2] combined
with RANSAC, FCGF[2] combined with TEASER++[3], Overlap PREDA-
TOR[8] and Robust ICP [6]. In this section we will discuss the process and
compare alignment results for each of these methods.

To evaluate mentioned methods we have taken the ground truth point-clouds
(we have 193 point-clouds) and noised it. (We applied translation from 0 to 100
centimeters in 10 centimeters increase and random rotation from 0 to 20 degrees
in 4 degrees increase). We then used methods to align noised point-clouds back
to cutouts of Matterport point-cloud and evaluated errors in translation and
in rotation in comparison to ground truth camera poses. The translation error
is calculated as a distance between ground truth camera pose and an aligned
noised camera pose. The rotation error is calculated:

e = arccos(0.5 ∗ (trace(R)− 1)) (9)

where
R = RTGT ∗Rnoised (10)

RGT is the rotation matrix of ground truth camera pose and Rnoised is the ro-
tation matrix of noised and aligned camera pose.

The FCGF[2] + RANSAC method required we first ran FCGF to obtain
feature descriptors for both point-clouds. We are using pre-taught model (Re-
sUNetBN2C) provided by the authors that was trained on indoor datasets.
FCGF calculates the feature descriptors from voxels of the point-cloud so it
requires a voxel size. In this experiment, the voxel size is set to 2.5 centimeters.
After getting feature descriptors from FCGF, we calculated tentative matches
between a pair of point-clouds by calculating the feature vectors distances and
finding the closest ones. Finally we ran RANSAC implemented in MATLAB on
obtained feature matches and got a transformation structure containing scale,
translation and rotation. Results of this aligment method can be seen in figures
17 and 18. Noised point-clouds with rotations of 12 and 20 degrees result in
smaller errors whereas 8 and 16 degrees noised point-clouds result in large errors.
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Figure 17: Translation error for FCGF + RANSAC alignment over all transla-
tion and rotation noised point-clouds.
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Figure 18: Rotation error for FCGF + RANSAC alignment over all translation
and rotation noised point-clouds.
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The code of TEASER++[8] is publicly available as C++ and Python li-
braries under the MIT license. We used the Python library for the evaluation.
The FCGF[2] + TEASER++[8] method required similar approach as the pre-
vious method and again we had to match feature descriptors as TEASER++
assumes correspondences between two point-clouds to be the same row in the
.ply file. Unfortunately even though TEASER++ ran on smaller point-clouds
that we tested it on, when presented with point-clouds created from feature
matches, it would run out of memory and get killed by the OS. According to
the authors, this problem is ”due to the algorithm of generating the compati-
bility graph, the memory consumption is on the order of N2.” [9] and since we
have approximately between 20 to 30 thousand correspondences the computer
runs out of memory. This could be solved by either sub-sampling point-cloud
correspondences, sub-sampling point-clouds at the beginning or changing voxel
size. To see TEASER++ alignment on two smaller HoloLens point-clouds view
figure 19

Figure 19: Example of point-clouds from HoloLens being aligned to the first
HoloLens depth point-cloud, using FCGF[2] and TEASER++[8] for alignment.
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Overlap Predator [8] is a model for pairwise point-cloud registration special-
ized in point-clouds with low overlap (≤ 30% overlap) by focusing sampling to
overlap areas. The code is publicly accessible [5] under the MIT license. It is
available in Python using Pytorch and CUDA, we are using pre-trained model
for indoor scenes. As can be seen figure 8 even point-clouds with small overlaps
are aligned correctly. From the Predator [8] alignment we get a 4x4 transfor-
mation matrix. While Overlap Predator seems to be working well on a pair of
HoloLens depth point-clouds as can be seen in fig. 20. When we take tried to
run Predator on a HoloLens point-cloud and a Matterport point-cloud cutout
the resulting alignment was incorrect (fig. 21). The two point-clouds have very
different density of points and shape of the Matterport cutout does not copy the
shape of HoloLens point-cloud. To inspect why alignment fails we have decided
to subsample both point-clouds (HoloLens and Matterport) to the density of 1
point per 1 centimeter and to cut the Matterport point-cloud accordingly to the
HoloLens one to observe if a tighter fit of the Matterport point-cloud cutout
would affect the alignment result. We have generated Matterport cutouts based
on distances of points from NN in HoloLens point-cloud we then chose points
10, 9, 8, ..., 1cm distant from HoloLens point-cloud. Results of this experiment
are in the fig. 22. After this experiment it was observed that Predator does not
behave consistently and for the same input we get varying results (fig. 23).

TODO at last: Nahradit RANSAC v Predatoru necim jinym (Magsac,
Teaser++)
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Figure 20: Example of a pair of HoloLens point-clouds aligned by Predator[8].
Left is input, right is Predator alignment, upper row are two point-clouds from
the same recording session and the lower row are two point-clouds of the same
object from different recording sessions.
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Figure 21: Result of HoloLens and Matterport point-clouds alignment by Preda-
tor[8], left is ground truth, right is Predator alignment.
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Figure 22: Results of HoloLens and Matterport point-clouds alignment by
Predator[8], with changing fit of point-clouds from 10cm (upper left) to 1cm
(lower right).
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Figure 23: Results of HoloLens and Matterport point-clouds alignment by
Predator[8] several times with same pair of point-clouds and same parameters,
each time the alignment gave a different result.
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Figure 24: Translation error for Overlap Predator alignment over all translation
and rotation noised point-clouds.
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Figure 25: Rotation error for Overlap Predator alignment over all translation
and rotation noised point-clouds.
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Robust ICP [6], as the name indicates, is a robust version of the iterative
closest point algorithm with fast convergence. It is publicly available under the
MIT license as a C++ library. Output of the R-ICP is a transformed point-
cloud and a 4x4 transformation matrix. As can be seen in figures 26 and 27,
errors for just translated point-clouds are relatively small compared to errors
while applying rotation.
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Figure 26: Translation error for R-ICP alignment over all translation and rota-
tion noised point-clouds.
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Figure 27: Rotation error for R-ICP alignment over all translation and rotation
noised point-clouds.
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5 Conclusion

In this work we presented our process of obtaining ground truth data from
HoloLens depth point-clouds, Vicon data and a Matterport point-cloud of a
room. We then evaluated several point-cloud alignment methods using the
acquired ground truth. There is still some room for development like for example
training point-cloud aligning methods on our datasets.
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