Noise adaptive weighting
training videos may be unrelated → we compute similarity between video frames and example images and use normalized similarity score to weight contribution of the video in the loss.

METHOD

CHANGEIT DATASET

- **Labelling step**
 - compute labels for a video using the state and action classifiers:
 - Look for the Change: Learning Object States and State-Modifying Actions from Untrimmed Web Videos
 - Tomáš Souček¹, Jean-Baptiste Alayrac², Antoine Miech², Ivan Laptev³, Josef Sivic¹
 - ¹Czech Technical University ²DeepMind ³ENS/INRIA

- **Contributions**
 - Self-supervised model for learning object states and state-modifying actions from long uncurated web videos.
 - Causal ordering signal (initial state → action → end state) is used as the supervision.
 - New uncurated dataset with 2600+ hours of video and 34 thousand changes of object states.

- **Challenges**
 - Visual variability of the objects and its states.
 - Thousands of objects with many more states, annotating is both difficult and expensive.
 - In-the-wild, noisy, uncurated, and long videos.

- **Goal**
 - Temporally localize object states together with the corresponding state-modifying actions in videos.
 - An example: the initial state plain corpus, the end state frosted cake, and the action cake frosting.
 - Use only uncurated videos from the internet with minimal supervision.

OVERVIEW

RESULTS

- Training on 44 categories of the ChangeIt dataset
- A separate model trained for each category
- A single frame predicted as the initial state, the action and the end state per video

TEMPORAL LOCALIZATION

- Gathered by searching Youtube for terms such as "How to cut an apple?"
- 44 state-changing action categories such as apple cutting, ball inflating, etc.
- 34,428 in-the-wild videos, in total 2,642 hours, average video length 4.6 minutes
- 667 videos per-frame annotated with labels: background, initial state, action, end state

ABLATIONS

- clear improvement with increasing dataset size
- model improves even when trained on more noisy low-ranking videos

PROJECT PAGE

- data.ciirc.cvut.cz/public/projects/2022LookForTheChange

ACKNOWLEDGEMENTS