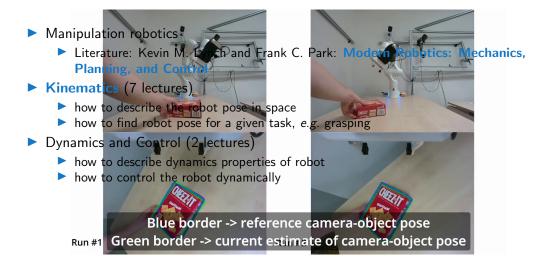


Robotics: Course organization

Vladimír Petrík

vladimir.petrik@cvut.cz

25.09.2023


- Manipulation robotics
 - ► Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

- Manipulation robotics
 - ► Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- ► Kinematics (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. grasping

- Manipulation robotics
 - Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- ► Kinemati (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. graspin

- Manipulation robotics
 - ► Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- ► Kinematics (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. grasping
- Dynamics and Control (2 lectures)
 - how to describe dynamics properties of robot
 - how to control the robot dynamically

- Manipulation robotics
 - ► Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- ► Kinematics (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. grasping
- Dynamics and Control (2 lectures)
 - how to describe dynamics properties of robot
 - how to control the robot dynamically
- ► Al in robotics (4 lectures)
 - Motion planning
 - ► Modern AI applications (RL, GraspNet, ...)

- Manipulation robotics
 - Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- Kinematics (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. grasping
- Dynamics and Control (2 lectures)
 - how to describe dynamics properties of robot
 - how to control the robot dynamically
- ► Al in robotics (4 lectures)
 - Motion planning
 - Modern Al applications (RL, GraspNet, ...)

Laboratories

- Program robotics toolbox in Python
 - combination of work in lab and homework
 - automatic evaluation with unit-tests
 - labs are in KN:E-132
 - ▶ labs follow-up the lectures, study the lecture before lab

Laboratories

- Program robotics toolbox in Python
 - combination of work in lab and homework
 - automatic evaluation with unit-tests
 - ► labs are in KN:E-132
 - labs follow-up the lectures, study the lecture before lab
- Solving practical project assignment on real industrial robot
 - robots are located in CIIRC:JP:B-415
 - brute reservation system
 - optional (recommended) consultations
 - safety in the 6th week is mandatory to attend

Evaluation

- ► Homework:
 - ▶ four mandatory assignments: 10 points
 - ▶ four optional assignments: max 10 points
- Final project: max 20 points
- ▶ Tests during semester (8. and 14. week): max 20 points
- Exam: max 40 points

Teachers

Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz

Teachers

- Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz
- Laboratories
 - Robotics toolbox and homework
 - Vladimír Petrík
 - David Kovář

Teachers

- Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz
- Laboratories
 - ► Robotics toolbox and homework
 - Vladimír Petrík
 - David Kovář
 - Final project on real robots
 - Vladimír Smutný
 - Pavel Krsek