

Robotics: Rigid body motion

Vladimír Petrík vladimir.petrik@cvut.cz 25.09.2023

Mobilní robot, UGV unmanned ground vehicle

What is robot?

Mobilní robot, UGV unmanned ground vehicle

Flying robots (e.g. drones)

What is robot?

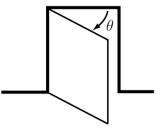
Mobilní robot, UGV unmanned ground vehicle

Flying robots (e.g. drones)

Manipulators (např. Franka Emika Panda)

Robot configuration

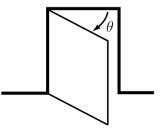
Complete specification of the position of every point of the robot.



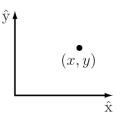
The configuration is described by the angle θ .

Robot configuration

Complete specification of the position of every point of the robot.



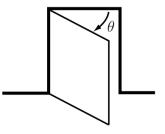
The configuration is described by the angle θ .



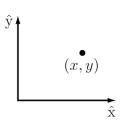
Point in plane is described by two coordinates.

Robot configuration

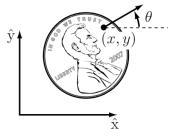
Complete specification of the position of every point of the robot.



The configuration is described by the angle θ .



Point in plane is described by two coordinates.



Planar rigid object configuration consists of the position and orientation.

Degrees of freedom (DoF)

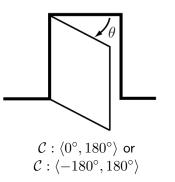
- The minimum number of real-valued coordinates needed to represent the configuration.
 - ► door: 1
 - planar point: 2
 - planar rigid object: 3
 - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)

Degrees of freedom (DoF)

- The minimum number of real-valued coordinates needed to represent the configuration.
 - door: 1
 - planar point: 2
 - planar rigid object: 3
 - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)
- Determining DoF
 - (sum of freedom of the points) (number of independent constraints)
 - Rigid objects
 - The distance between any two given points on a rigid body remains constant
 - \blacktriangleright Exercise: write constraints for N points of planar rigid object
 - For some robots, determining number of DoF is non-trivial

Configuration space - ${\mathcal C}$

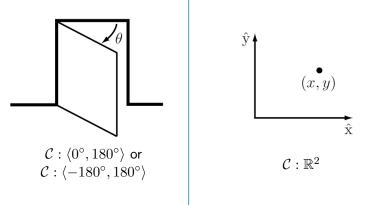
- ▶ The *N*-dimensional space (*N* correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- Contains all possible configurations of the robot





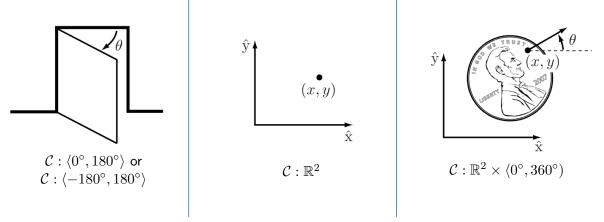
Configuration space - ${\mathcal C}$

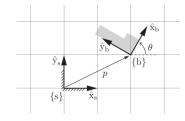
- ▶ The *N*-dimensional space (*N* correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- Contains all possible configurations of the robot



Configuration space - ${\mathcal C}$

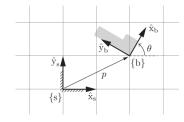
- The N-dimensional space (N correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- Contains all possible configurations of the robot





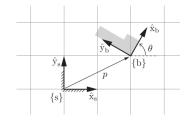
We attach a **body** frame to rigid body

- Usually placed in the center of mass (but not required)
- Can be placed outside of the body
- Body frame is not moving w.r.t. to the body



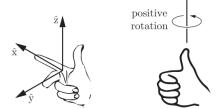
We attach a body frame to rigid body

- Usually placed in the center of mass (but not required)
- Can be placed outside of the body
- Body frame is not moving w.r.t. to the body
- We select a fixed reference frame
 - center of the room
 - corner of the table
 - base of the manipulator



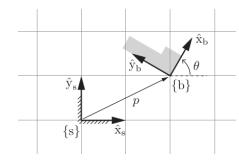
• We attach a **body** frame to rigid body

- Usually placed in the center of mass (but not required)
- Can be placed outside of the body
- Body frame is not moving w.r.t. to the body
- We select a fixed reference frame
 - center of the room
 - corner of the table
 - base of the manipulator
- All frames are right-handed

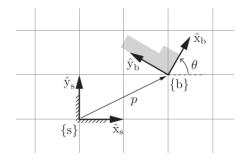


The configuration of body is given by

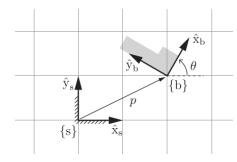
- position of body frame w.r.t. reference frame
- orientation of body frame w.r.t. reference frame



- The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- Body frame origin
 - $\blacktriangleright p = p_x \hat{x}_s + p_y \hat{y}_s \in \mathbb{R}^2$
 - If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$



- The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- Body frame origin
 - $\blacktriangleright p = p_x \hat{x}_s + p_y \hat{y}_s \in \mathbb{R}^2$
 - If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$
- Orientation
 - ▶ Angle $\theta \in \langle 0^{\circ}, 360^{\circ})$



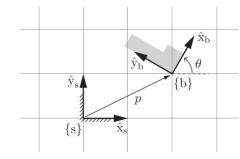
- The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- Body frame origin
 - $\blacktriangleright p = p_x \hat{x}_s + p_y \hat{y}_s \in \mathbb{R}^2$

• If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$

Orientation

- Angle $\theta \in \langle 0^\circ, 360^\circ \rangle$
- Convenient for next computations:

$$\begin{aligned} \hat{\boldsymbol{x}}_{\boldsymbol{b}} &= +\cos\theta \hat{\boldsymbol{x}}_{\boldsymbol{s}} + \sin\theta \hat{\boldsymbol{y}}_{\boldsymbol{s}} \\ \hat{\boldsymbol{y}}_{\boldsymbol{b}} &= -\sin\theta \hat{\boldsymbol{x}}_{\boldsymbol{s}} + \cos\theta \hat{\boldsymbol{y}}_{\boldsymbol{s}} \\ \text{Rotation matrix } R &= (\hat{\boldsymbol{x}}_{\boldsymbol{b}}, \hat{\boldsymbol{y}}_{\boldsymbol{b}}) = \begin{pmatrix} \cos\theta & -\sin\\ \sin\theta & \cos\theta \end{pmatrix} \end{aligned}$$



 \triangleright R has 4 numbers but only 1 DoF - 3 independent constraints

- both columns are unit vectors
- columns are orthogonal to each other

 \blacktriangleright R has 4 numbers but only 1 DoF - 3 independent constraints

- both columns are unit vectors
- columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, *i.e.* $R \in SO(2)$
 - Special Orthogonal group

$$\blacktriangleright \det(R) = 1$$

$$\blacktriangleright RR^{\top} = I, i.e. R^{-1} = R^{\top}$$

 $(R_1 R_2) R_3 = R_1 (R_2 R_3)$

$$R_1 R_2? = ?R_2 R_1$$



 \blacktriangleright R has 4 numbers but only 1 DoF - 3 independent constraints

- both columns are unit vectors
- columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, *i.e.* $R \in SO(2)$
 - Special Orthogonal group

$$\blacktriangleright \det(R) = 1$$

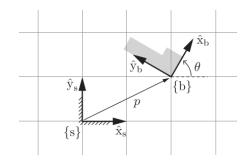
$$\blacktriangleright RR^{\top} = I, i.e. R^{-1} = R^{\top}$$

- $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
- ▶ For SO(2) $R_1R_2 = R_2R_1$

 \blacktriangleright R has 4 numbers but only 1 DoF - 3 independent constraints

- both columns are unit vectors
- columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, *i.e.* $R \in SO(2)$
 - Special Orthogonal group
 - $\blacktriangleright \det(R) = 1$
 - $\blacktriangleright RR^{\top} = I, i.e. R^{-1} = R^{\top}$
 - $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
 - ► For SO(2) $R_1R_2 = R_2R_1$
- Usage of rotation matrix
 - to represent an orientation of the frame
 - to change the reference frame in which a vector is represented
 - to rotate vector/frame

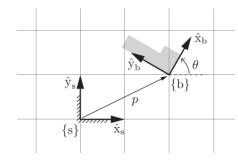
A pair (R_{ab}, p) represents pose/configuration of the body



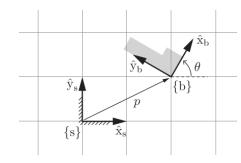
▶ A pair (R_{ab}, p)

- represents pose/configuration of the body
- changes the reference frame of a vector

$$\boldsymbol{v}_a = R_{ab} \boldsymbol{v}_b + \boldsymbol{p}$$



 A pair (R_{ab}, p)
 represents pose/configuration of the body
 changes the reference frame of a vector v_a = R_{ab}v_b + p
 moves vector/frame (R, t) R_{moved} = R_{ab}R t_{moved} = R_{ab}t + p



 A pair (R_{ab}, p)
 represents pose/configuration of the body
 changes the reference frame of a vector v_a = R_{ab}v_b + p
 moves vector/frame (R, t)

 $\boldsymbol{R}_{\mathsf{moved}} = R_{ab}R \quad \boldsymbol{t}_{\mathsf{moved}} = R_{ab}\boldsymbol{t} + \boldsymbol{p}$

Alternatively, in homogeneous coordinates $T_{ab} = \begin{pmatrix} R_{ab} & p \\ \mathbf{0}^{\top} & 1 \end{pmatrix} \in SE(2)$

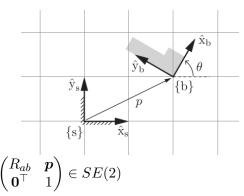
Special Euclidean Group

represents both translation and rotation in a single matrix

$$v_a^H = T_{ab} v_b^H$$

$$(T_1T_2) T_3 = T_1 (T_2T_3)$$

 $\blacktriangleright T_1T_2 \neq T_2T_1$



Special Euclidean Group

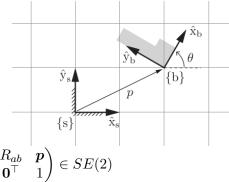
represents both translation and rotation in a single matrix

•
$$\boldsymbol{v}_a^H = T_{ab} \boldsymbol{v}_b^H$$

- $(T_1 T_2) T_3 = T_1 (T_2 T_3)$
- $\blacktriangleright T_1T_2 \neq T_2T_1$
- lnverse T^{-1}

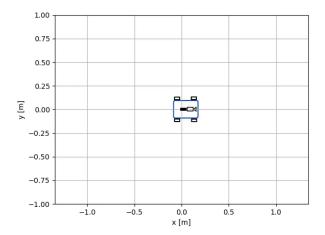
computing inverse of a matrix is costly

$$T^{-1} = \begin{pmatrix} R^{\top} & -R^{\top}t \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



SE(2) example

$$\begin{split} T_{\mathsf{next}} &= T_{\mathsf{current}} T_x(\delta_x) \qquad T_{\mathsf{next}} = T_{\mathsf{current}} T_\theta(\delta_\theta) \qquad T_{\mathsf{next}} = T_{\mathsf{current}} T_x(\delta_x) \\ \text{Delta transformations are defined in robot frame.} \end{split}$$

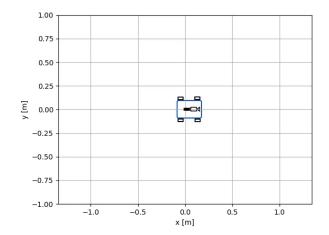


SE(2) example

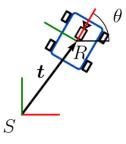
$$\begin{split} T_{\mathsf{next}} &= T_x(\delta_x) T_{\mathsf{current}} & T_{\mathsf{next}} = T_\theta(\delta_\theta) T_{\mathsf{current}} & T_{\mathsf{next}} = T_x(\delta_x) T_{\mathsf{current}} \\ \text{Delta transformations are defined in reference frame.} \end{split}$$

SE(2) example

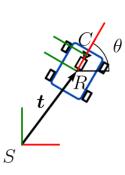
 $T_{\text{next}} = T_x(\delta_x)T_{\text{current}}$ $T_{\text{next}} = T_{\theta}(\delta_{\theta})T_{\text{current}}$ $T_{\text{next}} = T_x(\delta_x)T_{\text{current}}$ Delta transformations are defined in reference frame.



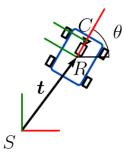
$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}$$



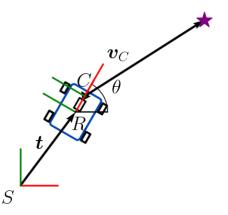
$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



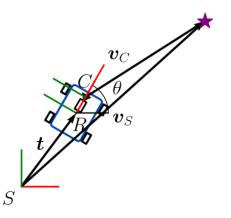
$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

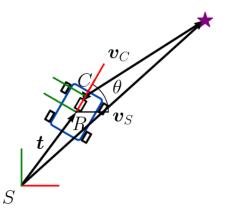


$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
How to compute \mathbf{v}_S ?



SE(2) example camera

$$T_{SR} = \begin{pmatrix} R(\theta) & t \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}$$
How to compute v_S ?
$$T_{SC} = T_{SR}T_{RC}$$
$$v_S = T_{SC}v_C$$



Extending to SO(3) and SE(3)

► SO(3)► $\det(R) = 1$ ► $RR^{\top} = I$, *i.e.* $R^{-1} = R^{\top}$ ► $(R_1R_2)R_3 = R_1(R_2R_3)$ ► $R_1R_2? = ?R_2R_1$

Extending to SO(3) and SE(3)

► *SO*(3)

- $\blacktriangleright \det(R) = 1$
- $\blacktriangleright RR^{\top} = I, i.e. R^{-1} = R^{\top}$
- $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
- ▶ $R_1R_2 \neq R_2R_1$ obecně

Extending to SO(3) and SE(3)

 \triangleright SO(3) \blacktriangleright det(R) = 1 \triangleright $RR^{\top} = I$. *i.e.* $R^{-1} = R^{\top}$ $(R_1R_2)R_3 = R_1(R_2R_3)$ \triangleright $R_1R_2 \neq R_2R_1$ obecně \triangleright SE(3) $\triangleright v_a^H = T_{ab} v_b^H$ $(T_1T_2)T_3 = T_1(T_2T_3)$ \blacktriangleright $T_1T_2 \neq T_2T_1$ $T^{-1} = \begin{pmatrix} R^{\top} & -R^{\top}t \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$

How to compute $R \in SO(3)$?

• Composing rotations around the x, y, z axes

$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

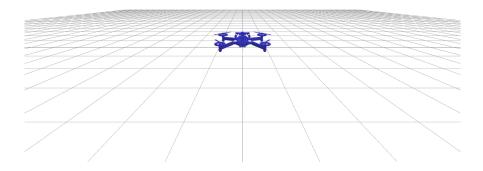
$$R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

From other representations of rotations

Example of SE(3)

$$\begin{split} T_{\mathsf{next}} &= TT_z(\delta_z) \qquad T_{\mathsf{next}} = TR_z(\theta_z) \qquad T_{\mathsf{next}} = TR_y(\theta_y) \qquad T_{\mathsf{next}} = TT_x(\delta_x) \\ & R_y, R_z \in SE(3)! \end{split}$$



$$\bullet \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$$

- $\blacktriangleright \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- Axis-angle to R
 - Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta [\hat{\omega}] + (1 \cos \theta) [\hat{\omega}]^2$ Skew-symmetric matrix $[\omega] = \begin{pmatrix} 0 & -\omega_x & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - Example: compute R_z

- $\blacktriangleright \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- Axis-angle to R
 - ► Rodrigues' formula $R(\hat{\boldsymbol{\omega}}, \theta) = I + \sin \theta \left[\hat{\boldsymbol{\omega}}\right] + (1 \cos \theta) \left[\hat{\boldsymbol{\omega}}\right]^2$
 - Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - Example: compute R_z
- Axis-angle from R algorithm
 - If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.

- $\bullet \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- Axis-angle to R
 - ► Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta [\hat{\omega}] + (1 \cos \theta) [\hat{\omega}]^2$
 - Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - Example: compute R_z
- Axis-angle from R algorithm
 - If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.
 - If $\operatorname{tr} R = -1$ then $\theta = \pi$ and

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{pmatrix} r_{13} & r_{23} & 1+r_{33} \end{pmatrix}^{\top} \text{ if } r_{33} \neq -1 \\ \hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{pmatrix} r_{12} & 1+r_{22} & r_{32} \end{pmatrix}^{\top} \text{ if } r_{22} \neq -1 \\ \hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{pmatrix} 1+r_{11} & r_{21} & r_{31} \end{pmatrix}^{\top} \text{ if } r_{11} \neq -1 \end{cases}$$

$$\bullet \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$$

Axis-angle to R

- ► Rodrigues' formula $R(\hat{\boldsymbol{\omega}}, \theta) = I + \sin \theta \left[\hat{\boldsymbol{\omega}}\right] + (1 \cos \theta) \left[\hat{\boldsymbol{\omega}}\right]^2$ $\begin{pmatrix} 0 & -\omega_z & \omega_y \end{pmatrix}$
- Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
- Example: compute R_z
- Axis-angle from R algorithm
 - If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.
 - If $\operatorname{tr} R = -1$ then $\theta = \pi$ and

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{pmatrix} r_{13} & r_{23} & 1+r_{33} \end{pmatrix}^{\top} \text{ if } r_{33} \neq -1$$

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{pmatrix} r_{12} & 1+r_{22} & r_{32} \end{pmatrix}^{\top} \text{ if } r_{22} \neq -1$$

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{pmatrix} 1+r_{11} & r_{21} & r_{31} \end{pmatrix}^{\top} \text{ if } r_{11} \neq -1$$

• Otherwise $\theta = \arccos(1/2(\operatorname{tr} R - 1))$ and $[\hat{\boldsymbol{\omega}}] = \frac{1}{2\sin\theta}(R - R^{\top})$

Exponential coordinates

 \blacktriangleright A single vector $oldsymbol{\omega} \in \mathbb{R}^3$

- Also called Euler vector or Euler-Rodrigues parameters
- Mapping to angle-axis representation:

$$\theta = \|\boldsymbol{\omega}\| \\ \hat{\boldsymbol{\omega}} = \frac{\boldsymbol{\omega}}{\theta}$$

Exponential coordinates

- \blacktriangleright A single vector $oldsymbol{\omega} \in \mathbb{R}^3$
- Also called Euler vector or Euler-Rodrigues parameters
- Mapping to angle-axis representation:

$$\theta = \|\boldsymbol{\omega}\| \\ \hat{\boldsymbol{\omega}} = \frac{\boldsymbol{\omega}}{\theta}$$

- $\blacktriangleright Exponential to/from R$
 - $R = \exp \boldsymbol{\omega}$: use Rodrigues' formula
 - $\omega = \log R$: use angle axis from R algorithm

Exponential coordinates

- \blacktriangleright A single vector $oldsymbol{\omega} \in \mathbb{R}^3$
- Also called Euler vector or Euler-Rodrigues parameters
- Mapping to angle-axis representation:

$$\theta = \|\boldsymbol{\omega}\| \\ \hat{\boldsymbol{\omega}} = \frac{\boldsymbol{\omega}}{\theta}$$

- \blacktriangleright Exponential to/from R
 - $R = \exp \omega$: use Rodrigues' formula
 - $\omega = \log R$: use angle axis from R algorithm
- Why exponential?
 - $\blacktriangleright\,$ it correspond to matrix exponential/logarithm of $[\omega]\,$
 - \blacktriangleright if $\pmb{\omega}$ is angular velocity, its integration for one unit of time leads to exponential and the final orientation is R
 - numerically sensitive to small angles

$$q ∈ ℝ^4$$
, $||q|| = 1$
 From axis-angle

•
$$q_w = \cos(\theta/2)$$

• $q_{xyz} = \hat{\omega} \sin(\theta/2)$

 $\boldsymbol{q} \in \mathbb{R}^{4}, \quad \|\boldsymbol{q}\| = 1$ From axis-angle $\boldsymbol{q}_{w} = \cos(\theta/2)$ $\boldsymbol{q}_{xyz} = \hat{\boldsymbol{\omega}}\sin(\theta/2)$ From R $\boldsymbol{q}_{w} = 1/2\sqrt{1 + \operatorname{tr} R}$ $\boldsymbol{q}_{xyz} = \frac{1}{4q_{w}} \left(r_{32} - r_{23} \quad r_{13} - r_{31} \quad r_{21} - r_{12}\right)^{\mathsf{T}}$

 $\triangleright q \in \mathbb{R}^4$, ||q|| = 1From axis-angle $\blacktriangleright q_w = \cos(\theta/2)$ $\mathbf{P} \ \mathbf{q}_{xuz} = \hat{\boldsymbol{\omega}} \sin\left(\theta/2\right)$ \blacktriangleright From R $q_w = 1/2\sqrt{1 + \operatorname{tr} R}$ $\mathbf{p}_{xyz} = \frac{1}{4a_{xyz}} \begin{pmatrix} r_{32} - r_{23} & r_{13} - r_{31} & r_{21} - r_{12} \end{pmatrix}^{\top}$ \blacktriangleright To R $\blacktriangleright R = \exp\left(2\arccos\left(q_w\right)\frac{q_{xyz}}{\|q_{xyz}\|}\right)$ • *i.e.* rotate about q_{xyz} with $\theta = 2 \arccos(q_w)$

- $\triangleright q \in \mathbb{R}^4$, ||q|| = 1From axis-angle $\blacktriangleright q_w = \cos(\theta/2)$ $\mathbf{P} \ \mathbf{q}_{xuz} = \hat{\boldsymbol{\omega}} \sin\left(\theta/2\right)$ \blacktriangleright From R $q_w = 1/2\sqrt{1 + \operatorname{tr} R}$ $\mathbf{p}_{xyz} = \frac{1}{4a} \begin{pmatrix} r_{32} - r_{23} & r_{13} - r_{31} & r_{21} - r_{12} \end{pmatrix}^{\top}$ \blacktriangleright To R $\blacktriangleright R = \exp\left(2\arccos\left(q_w\right)\frac{q_{xyz}}{\|q_{xyz}\|}\right)$ • *i.e.* rotate about q_{xyz} with $\theta = 2 \arccos(q_w)$ \blacktriangleright Quaternions are not unique, two solutions for the same R
- Numerically stable

Other representations

Euler angles

- three numbers $\theta_1, \theta_2, \theta_3$
- \blacktriangleright rotation about the x, y, or z axes
- e.g. XYX Euler angles correspond to $R = R_x(\theta_1)R_y(\theta_2)R_x(\theta_3)$
- computing Euler angles from R is often numerically unstable and requires special algorithm for each triplet of axes

Other representations

Euler angles

- three numbers $\theta_1, \theta_2, \theta_3$
- \blacktriangleright rotation about the x, y, or z axes
- e.g. XYX Euler angles correspond to $R = R_x(\theta_1)R_y(\theta_2)R_x(\theta_3)$
- computing Euler angles from R is often numerically unstable and requires special algorithm for each triplet of axes
- ▶ 6D representation of rotation
 - represented by the first two columns of R
 - smooth representation
 - used in machine-learning (e.g. output of neural network)

Summary

- ► Configuration, Configuration Space C, DoF
- ▶ Planar rigid body motion SO(2) , SE(2)
- \blacktriangleright Spatial rigid body motion SO(3) , SE(3)
- Properties of rotation matrix in SO(2) and SO(3)
- Representation of spatial rotations
 - rotation matrix
 - axis-angle
 - exponential coordinates
 - quaternions
 - Euler angles
 - 6D representation

Laboratories goal

Start implementing robotics toolbox

\blacktriangleright Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)

Laboratories goal

- Start implementing robotics toolbox
- \blacktriangleright Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)
 - $\exp(\boldsymbol{\omega}) \\ \log(R)$
 - $\sim R^{-1}$
 - ▶ ...
- Preparation
 - Linux and Conda are recommended
 - Install conda
 - Install Python IDE (PyCharm, VSCode)

