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What is robot?

Mobilńı robot, UGV -
unmanned ground vehicle

Flying robots (e.g. drones)

Manipulators (nap̌r. Franka
Emika Panda)
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Robot configuration

▶ Complete specification of the position of every point of the robot.

The configuration is
described by the angle θ.

Point in plane is described
by two coordinates.

Planar rigid object
configuration consists of the
position and orientation.
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Degrees of freedom (DoF)

▶ The minimum number of real-valued coordinates needed to represent the
configuration.
▶ door: 1
▶ planar point: 2
▶ planar rigid object: 3
▶ manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)

▶ Determining DoF
▶ (sum of freedom of the points) - (number of independent constraints)
▶ Rigid objects

▶ The distance between any two given points on a rigid body remains constant
▶ Exercise: write constraints for N points of planar rigid object

▶ For some robots, determining number of DoF is non-trivial



Robotics: Rigid body motion
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Configuration space - C
▶ The N -dimensional space (N correspond to number of DoF)
▶ Every point of configuration space correspond to one configuration
▶ Contains all possible configurations of the robot

C : ⟨0◦, 180◦⟩ or
C : ⟨−180◦, 180◦⟩

C : R2 C : R2 × ⟨0◦, 360◦)
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Rigid body motion in plane

▶ We attach a body frame to rigid body
▶ Usually placed in the center of mass (but not required)
▶ Can be placed outside of the body
▶ Body frame is not moving w.r.t. to the body

▶ We select a fixed reference frame
▶ center of the room
▶ corner of the table
▶ base of the manipulator

▶ All frames are right-handed
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Rigid body motion in plane

▶ The configuration of body is given by
▶ position of body frame w.r.t. reference frame
▶ orientation of body frame w.r.t. reference frame

▶ Body frame origin
▶ p = pxx̂s + pyŷs ∈ R2

▶ If reference frame is clear from the context: p = (px, py)
⊤

▶ Orientation
▶ Angle θ ∈ ⟨0◦, 360◦)
▶ Convenient for next computations:

x̂b = +cos θx̂s + sin θŷs

ŷb = − sin θx̂s + cos θŷs

Rotation matrix R = (x̂b, ŷb) =

(
cos θ − sin θ
sin θ cos θ

)
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(
cos θ − sin θ
sin θ cos θ

)



Robotics: Rigid body motion
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SO(2)

▶ R has 4 numbers but only 1 DoF - 3 independent constraints
▶ both columns are unit vectors
▶ columns are orthogonal to each other

▶ Set of all rotation matrix is SO(2) group, i.e. R ∈ SO(2)
▶ Special Orthogonal group
▶ det(R) = 1
▶ RR⊤ = I, i.e. R−1 = R⊤

▶ (R1R2)R3 = R1 (R2R3)
▶ R1R2? =?R2R1

▶ Usage of rotation matrix
▶ to represent an orientation of the frame
▶ to change the reference frame in which a vector is represented
▶ to rotate vector/frame



Robotics: Rigid body motion
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SE(2)

▶ A pair (Rab,p)
▶ represents pose/configuration of the body

▶ changes the reference frame of a vector
va = Rabvb + p

▶ moves vector/frame (R, t)
Rmoved = RabR tmoved = Rabt+ p

▶ Alternatively, in homogeneous coordinates Tab =

(
Rab p
0⊤ 1

)
∈ SE(2)

▶ Special Euclidean Group
▶ represents both translation and rotation in a single matrix
▶ vH

a = Tabv
H
b

▶ (T1T2)T3 = T1 (T2T3)
▶ T1T2? =?T2T1
▶ Inverse T−1

▶ computing inverse of a matrix is costly

▶ T−1 =

(
R⊤ −R⊤t

0⊤ 1

)
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Vladiḿır Petŕık 9 / 21

SE(2)

▶ A pair (Rab,p)
▶ represents pose/configuration of the body
▶ changes the reference frame of a vector

va = Rabvb + p
▶ moves vector/frame (R, t)

Rmoved = RabR tmoved = Rabt+ p

▶ Alternatively, in homogeneous coordinates Tab =

(
Rab p
0⊤ 1

)
∈ SE(2)

▶ Special Euclidean Group
▶ represents both translation and rotation in a single matrix
▶ vH

a = Tabv
H
b

▶ (T1T2)T3 = T1 (T2T3)
▶ T1T2 ̸= T2T1
▶ Inverse T−1

▶ computing inverse of a matrix is costly

▶ T−1 =

(
R⊤ −R⊤t

0⊤ 1

)



Robotics: Rigid body motion
Vladiḿır Petŕık 9 / 21
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SE(2) example

Tnext = TcurrentTx(δx) Tnext = TcurrentTθ(δθ) Tnext = TcurrentTx(δx)
Delta transformations are defined in robot frame.
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SE(2) example

Tnext = Tx(δx)Tcurrent Tnext = Tθ(δθ)Tcurrent Tnext = Tx(δx)Tcurrent

Delta transformations are defined in reference frame.
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SE(2) example camera

TSR =

(
R(θ) t
0⊤ 1

)

TRC =

(
I

(
0.1 0

)⊤
0⊤ 1

)
How to compute vS?
TSC = TSRTRC

vS = TSCvC
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Vladiḿır Petŕık 12 / 21

SE(2) example camera

TSR =

(
R(θ) t
0⊤ 1

)
TRC =

(
I

(
0.1 0

)⊤
0⊤ 1

)

How to compute vS?
TSC = TSRTRC

vS = TSCvC



Robotics: Rigid body motion
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Extending to SO(3) and SE(3)

▶ SO(3)
▶ det(R) = 1
▶ RR⊤ = I, i.e. R−1 = R⊤

▶ (R1R2)R3 = R1 (R2R3)
▶ R1R2? =?R2R1

▶ SE(3)
▶ vH

a = Tabv
H
b

▶ (T1T2)T3 = T1 (T2T3)
▶ T1T2 ̸= T2T1

▶ T−1 =

(
R⊤ −R⊤t
0⊤ 1

)
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▶ SE(3)
▶ vH

a = Tabv
H
b

▶ (T1T2)T3 = T1 (T2T3)
▶ T1T2 ̸= T2T1

▶ T−1 =

(
R⊤ −R⊤t
0⊤ 1

)



Robotics: Rigid body motion
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How to compute R ∈ SO(3)?

▶ Composing rotations around the x, y, z axes

▶ Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


▶ Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


▶ Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


▶ From other representations of rotations
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Example of SE(3)

Tnext = TTz(δz) Tnext = TRz(θz) Tnext = TRy(θy) Tnext = TTx(δx)
Ry, Rz ∈ SE(3)!
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Axis-angle representation

▶ θ ∈ R, ω̂ ∈ R3, ∥ω̂∥ = 1

▶ Axis-angle to R
▶ Rodrigues’ formula R(ω̂, θ) = I + sin θ [ω̂] + (1− cos θ) [ω̂]

2

▶ Skew-symmetric matrix [ω] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


▶ Example: compute Rz

▶ Axis-angle from R algorithm
▶ If R = I then θ = 0 and ω̂ is undefined.
▶ If trR = −1 then θ = π and

▶ ω̂ = 1√
2(1+r33)

(
r13 r23 1 + r33

)⊤
if r33 ̸= −1

▶ ω̂ = 1√
2(1+r22)

(
r12 1 + r22 r32

)⊤
if r22 ̸= −1

▶ ω̂ = 1√
2(1+r11)

(
1 + r11 r21 r31

)⊤
if r11 ̸= −1

▶ Otherwise θ = arccos (1/2 (trR− 1)) and [ω̂] = 1
2 sin θ (R−R⊤)
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▶ If trR = −1 then θ = π and

▶ ω̂ = 1√
2(1+r33)

(
r13 r23 1 + r33

)⊤
if r33 ̸= −1

▶ ω̂ = 1√
2(1+r22)

(
r12 1 + r22 r32

)⊤
if r22 ̸= −1

▶ ω̂ = 1√
2(1+r11)

(
1 + r11 r21 r31

)⊤
if r11 ̸= −1

▶ Otherwise θ = arccos (1/2 (trR− 1)) and [ω̂] = 1
2 sin θ (R−R⊤)
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Exponential coordinates

▶ A single vector ω ∈ R3

▶ Also called Euler vector or Euler-Rodrigues parameters
▶ Mapping to angle-axis representation:

▶ θ = ∥ω∥
▶ ω̂ = ω

θ

▶ Exponential to/from R
▶ R = expω: use Rodrigues’ formula
▶ ω = logR: use angle axis from R algorithm

▶ Why exponential?
▶ it correspond to matrix exponential/logarithm of [ω]
▶ if ω is angular velocity, its integration for one unit of time leads to exponential and the

final orientation is R
▶ numerically sensitive to small angles
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Quaternions

▶ q ∈ R4, ∥q∥ = 1

▶ From axis-angle
▶ qw = cos (θ/2)
▶ qxyz = ω̂ sin (θ/2)

▶ From R
▶ qw = 1/2

√
1 + trR

▶ qxyz = 1
4qw

(
r32 − r23 r13 − r31 r21 − r12

)⊤
▶ To R

▶ R = exp
(
2 arccos (qw)

qxyz

∥qxyz∥

)
▶ i.e. rotate about qxyz with θ = 2arccos (qw)

▶ Quaternions are not unique, two solutions for the same R

▶ Numerically stable



Robotics: Rigid body motion
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Other representations

▶ Euler angles
▶ three numbers θ1, θ2, θ3
▶ rotation about the x, y, or z axes
▶ e.g. XYX Euler angles correspond to R = Rx(θ1)Ry(θ2)Rx(θ3)
▶ computing Euler angles from R is often numerically unstable and requires special

algorithm for each triplet of axes

▶ 6D representation of rotation
▶ represented by the first two columns of R
▶ smooth representation
▶ used in machine-learning (e.g. output of neural network)
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Summary

▶ Configuration, Configuration Space C, DoF
▶ Planar rigid body motion SO(2) , SE(2)

▶ Spatial rigid body motion SO(3) , SE(3)

▶ Properties of rotation matrix in SO(2) and SO(3)

▶ Representation of spatial rotations
▶ rotation matrix
▶ axis-angle
▶ exponential coordinates
▶ quaternions
▶ Euler angles
▶ 6D representation
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Laboratories goal

▶ Start implementing robotics toolbox
▶ Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)

▶ exp(ω)
▶ log(R)
▶ R−1

▶ . . .

▶ Preparation
▶ Linux and Conda are recommended
▶ Install conda
▶ Install Python IDE (PyCharm, VSCode)



Robotics: Rigid body motion
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