

# Robotics: Rigid body motion

Vladimír Petrík vladimir.petrik@cvut.cz 25.09.2023

#### What is robot?





Mobilní robot, UGV - unmanned ground vehicle



Flying robots (e.g. drones)



Manipulators (např. Franka Emika Panda)



Robotics: Rigid body motion

Vladimír Petrík

#### **Robot configuration**

▶ Complete specification of the position of every point of the robot.



The configuration is described by the angle  $\theta$ .



Point in plane is described by two coordinates.



Planar rigid object configuration consists of the position and orientation.



Robotics: Rigid body motion

Vladimír Petrík

#### Degrees of freedom (DoF)

- ► The minimum number of real-valued coordinates needed to represent the configuration.
  - door: 1
  - planar point: 2
  - planar rigid object: 3
  - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)
- Determining DoF
  - (sum of freedom of the points) (number of independent constraints)
  - Rigid objects
    - ► The distance between any two given points on a rigid body remains constant
    - ightharpoonup Exercise: write constraints for N points of planar rigid object
  - ► For some robots, determining number of DoF is non-trivial



# Configuration space - $\mathcal C$

- ightharpoonup The N-dimensional space (N correspond to number of DoF)
- ▶ Every point of configuration space correspond to one configuration
- ► Contains all possible configurations of the robot







## Rigid body motion in plane

 $\hat{y}_{b}$   $\hat{y}_{b}$ 

- ► We attach a **body** frame to rigid body
  - Usually placed in the center of mass (but not required)
  - Can be placed outside of the body
  - ▶ Body frame is not moving w.r.t. to the body
- ► We select a fixed reference frame
  - center of the room
  - corner of the table
  - base of the manipulator
- ► All frames are right-handed







Robotics: Rigid body motion

Vladimír Petrík

## Rigid body motion in plane



- position of body frame w.r.t. reference frame
- orientation of body frame w.r.t. reference frame



$$p = p_x \hat{\boldsymbol{x}}_s + p_y \hat{\boldsymbol{y}}_s \in \mathbb{R}^2$$

If reference frame is clear from the context:  $\boldsymbol{p}=(p_x,p_y)^{\top}$ 



Angle 
$$\theta \in \langle 0^{\circ}, 360^{\circ} \rangle$$

Convenient for next computations:

$$\hat{\boldsymbol{x}}_{\boldsymbol{b}} = +\cos\theta\hat{\boldsymbol{x}}_{\boldsymbol{s}} + \sin\theta\hat{\boldsymbol{y}}_{\boldsymbol{s}}$$

$$\begin{split} \hat{\pmb{y}}_{\pmb{b}} &= -\sin\theta \hat{\pmb{x}}_{\pmb{s}} + \cos\theta \hat{\pmb{y}}_{\pmb{s}} \\ \text{Rotation matrix } R &= (\hat{\pmb{x}}_{\pmb{b}}, \hat{\pmb{y}}_{\pmb{b}}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \end{split}$$



Robotics: Rigid body motion Vladimír Petrík

{b}

p

 $\hat{y}_s$ 

 $\{s\}$ 

- ▶ R has 4 numbers but only 1 DoF 3 independent constraints
  - both columns are unit vectors
  - columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, i.e.  $R \in SO(2)$ 
  - Special Orthogonal group
  - det(R) = 1
  - $ightharpoonup RR^{\top} = I$ , i.e.  $R^{-1} = R^{\top}$
  - $ightharpoonup (R_1R_2)R_3 = R_1(R_2R_3)$
  - ► For SO(2)  $R_1R_2? = ?R_2R_1$
- Usage of rotation matrix
  - ▶ to represent an orientation of the frame
  - ▶ to change the reference frame in which a vector is represented
  - ► to rotate vector/frame



- ightharpoonup A pair  $(R_{ab}, \boldsymbol{p})$ 
  - represents pose/configuration of the body
  - changes the reference frame of a vector
  - $\boldsymbol{v}_a = R_{ab}\boldsymbol{v}_b + \boldsymbol{p}$
  - ightharpoonup moves vector/frame (R, t)

$$oldsymbol{R}_{\mathsf{moved}} = R_{ab}R \quad oldsymbol{t}_{\mathsf{moved}} = R_{ab}oldsymbol{t} + oldsymbol{p}$$

- Alternatively, in homogeneous coordinates  $T_{ab} = \begin{pmatrix} R_{ab} & \pmb{p} \\ \pmb{0}^\top & 1 \end{pmatrix} \in SE(2)$ 
  - Special Euclidean Group
  - represents both translation and rotation in a single matrix
  - $\mathbf{v}_a^H = T_{ab} \mathbf{v}_b^H$
  - $(T_1T_2)T_3 = T_1(T_2T_3)$
  - T<sub>1</sub> $T_2$ ? =?  $\neq T_2T_1$ Inverse  $T^{-1}$

► computing inverse of a matrix is costly
$$T^{-1} = \begin{pmatrix} R^\top & -R^\top \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}$$



Robotics: Rigid body motion

Vladimír Petrík

{b}

p

 $\hat{y}_s$ 

 $\{s\}$ 

## SE(2) example

$$T_{\mathsf{next}} = T_{\mathsf{current}} T_x(\delta_x) \qquad T_{\mathsf{next}} = T_{\mathsf{current}} T_\theta(\delta_\theta) \qquad T_{\mathsf{next}} = T_{\mathsf{current}} T_x(\delta_x)$$
 Delta transformations are defined in robot frame.





## SE(2) example

$$T_{
m next} = T_x(\delta_x) T_{
m current}$$
  $T_{
m next} = T_{ heta}(\delta_{ heta}) T_{
m current}$   $T_{
m next} = T_x(\delta_x) T_{
m current}$  Delta transformations are defined in reference frame.





## SE(2) example camera

$$\begin{split} T_{SR} &= \begin{pmatrix} R(\theta) & \boldsymbol{t} \\ \boldsymbol{0}^\top & 1 \end{pmatrix} \\ T_{RC} &= \begin{pmatrix} I & \begin{pmatrix} 0.1 & 0 \end{pmatrix}^\top \\ \boldsymbol{0}^\top & 1 \end{pmatrix} \\ \text{How to compute } \boldsymbol{v}_S? \\ T_{SC} &= T_{SR}T_{RC} \\ \boldsymbol{v}_S &= T_{SC}\boldsymbol{v}_C \end{split}$$





## Extending to SO(3) and SE(3)

- ► *SO*(3)
  - $ightharpoonup \det(R) = 1$
  - $ightharpoonup RR^{\top} = I$ , i.e.  $R^{-1} = R^{\top}$
  - $ightharpoonup (R_1R_2) R_3 = R_1 (R_2R_3)$
  - $ightharpoonup R_1 R_2? = ? \neq R_2 R_1 \text{ obecně}$
- ► *SE*(3)

  - $\mathbf{v}_{a}^{H} = T_{ab}\mathbf{v}_{b}^{H}$   $(T_{1}T_{2})T_{3} = T_{1}(T_{2}T_{3})$

  - $T_1 T_2 \neq T_2 T_1$   $T^{-1} = \begin{pmatrix} R^\top & -R^\top t \\ \mathbf{0}^\top & 1 \end{pmatrix}$



## How to compute $R \in SO(3)$ ?

ightharpoonup Composing rotations around the x,y,z axes

$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ From other representations of rotations



# Example of SE(3)

$$\begin{split} T_{\mathsf{next}} = TT_z(\delta_z) & T_{\mathsf{next}} = TR_z(\theta_z) & T_{\mathsf{next}} = TR_y(\theta_y) & T_{\mathsf{next}} = TT_x(\delta_x) \\ R_y, R_z \in SE(3) ! & \end{split}$$





## **Axis-angle representation**

- $\bullet \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- ightharpoonup Axis-angle to R
  - ▶ Rodrigues' formula  $R(\hat{\omega}, \theta) = I + \sin \theta [\hat{\omega}] + (1 \cos \theta) [\hat{\omega}]^2$
  - Skew-symmetric matrix  $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
  - ightharpoonup Example: compute  $R_z$
- ightharpoonup Axis-angle from R algorithm
  - ▶ If R = I then  $\theta = 0$  and  $\hat{\omega}$  is undefined.
  - ▶ If  $\operatorname{tr} R = -1$  then  $\theta = \pi$  and

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{pmatrix} r_{13} & r_{23} & 1+r_{33} \end{pmatrix}^{\top} \text{ if } r_{33} \neq -1$$

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{pmatrix} r_{12} & 1+r_{22} & r_{32} \end{pmatrix}^{\top} \text{ if } r_{22} \neq -1$$

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{pmatrix} 1+r_{11} & r_{21} & r_{31} \end{pmatrix}^{\top} \text{ if } r_{11} \neq -1$$

• Otherwise  $\theta = \arccos(1/2(\operatorname{tr} R - 1))$  and  $[\hat{\omega}] = \frac{1}{2\sin\theta}(R - R^{\top})$ 



#### **Exponential coordinates**

- ightharpoonup A single vector  $oldsymbol{\omega} \in \mathbb{R}^3$
- ► Also called Euler vector or Euler-Rodrigues parameters
- ► Mapping to angle-axis representation:
  - $\mid \theta = ||\omega||$
  - $\hat{\omega} = \frac{\omega}{\theta}$
- ightharpoonup Exponential to/from R
  - $ightharpoonup R = \exp \omega$ : use Rodrigues' formula
  - $m{\omega} = \log R$ : use angle axis from R algorithm
- ► Why exponential?
  - ightharpoonup it correspond to matrix exponential/logarithm of  $[\omega]$
  - ightharpoonup if  $\omega$  is angular velocity, its integration for one unit of time leads to exponential and the final orientation is R
  - numerically sensitive to small angles



#### **Quaternions**

- ► From axis-angle

$$\mathbf{q}_{xyz} = \hat{\boldsymbol{\omega}} \sin\left(\theta/2\right)$$

ightharpoonup From R

$$\mathbf{q}_{xyz} = \frac{1}{4q_w} \begin{pmatrix} r_{32} - r_{23} & r_{13} - r_{31} & r_{21} - r_{12} \end{pmatrix}^{\top}$$

- ightharpoonup To R
  - $R = \exp\left(2\arccos\left(q_w\right) \frac{q_{xyz}}{\|q_{xyz}\|}\right)$
  - i.e. rotate about  $q_{xyz}$  with  $\theta = 2\arccos(q_w)$
- ightharpoonup Quaternions are not unique, two solutions for the same R
- ► Numerically stable



#### Other representations

- Euler angles
  - $\blacktriangleright$  three numbers  $\theta_1, \theta_2, \theta_3$
  - rotation about the x, y, or z axes
  - e.g. XYX Euler angles correspond to  $R = R_x(\theta_1)R_y(\theta_2)R_x(\theta_3)$
  - ightharpoonup computing Euler angles from R is often numerically unstable and requires special algorithm for each triplet of axes
- ▶ 6D representation of rotation
  - ightharpoonup represented by the first two columns of R
  - smooth representation
  - used in machine-learning (e.g. output of neural network)



#### **Summary**

- ightharpoonup Configuration Space  $\mathcal{C}$ , DoF
- ▶ Planar rigid body motion SO(2) , SE(2)
- ▶ Spatial rigid body motion SO(3) , SE(3)
- Properties of rotation matrix in SO(2) and SO(3)
- Representation of spatial rotations
  - rotation matrix
  - axis-angle
  - exponential coordinates
  - quaternions
  - Euler angles
  - ▶ 6D representation



## Laboratories goal

- ► Start implementing robotics toolbox
- ightharpoonup Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)
  - $ightharpoonup \exp(\boldsymbol{\omega})$
  - $ightharpoonup \log(R)$
  - $ightharpoonup R^{-1}$
  - **.** . . .
- Preparation
  - Linux and Conda are recommended
  - ► Install conda
  - ► Install Python IDE (PyCharm, VSCode)

