

CTU

Robotics: Differential Kinematics and Statics

Vladimír Petrík

vladimir.petrik@cvut.cz
09.10.2023

Motivation

Vladimír Petrík

Differential kinematics

- We know how to compute end-effector pose from the configuration
- forward kinematics
- $\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))$
- $\boldsymbol{x}(t)$ is expressed in task-space, i.e. $S E(2), S E(3)$, or $\mathbb{R}^{2}, \mathbb{R}^{3}$ for position only
- $\boldsymbol{q}(t) \in \mathbb{R}^{N}$ is configuration (joint space)
- t represents time

Differential kinematics

- We know how to compute end-effector pose from the configuration
- forward kinematics
- $\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))$
- $\boldsymbol{x}(t)$ is expressed in task-space, i.e. $S E(2), S E(3)$, or $\mathbb{R}^{2}, \mathbb{R}^{3}$ for position only
- $\boldsymbol{q}(t) \in \mathbb{R}^{N}$ is configuration (joint space)
- t represents time
- Differential kinematics
- relates end-effector velocity to joint velocities
- $\dot{\boldsymbol{x}}=\frac{\mathrm{d} \boldsymbol{x}(t)}{\mathrm{d} t} \in \mathbb{R}^{M}$
- Jacobian of the manipulator is core structure in the analysis

Jacobian

Forward kinematics:

$$
\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))
$$

Jacobian:

$$
\dot{\boldsymbol{x}}=\frac{\mathrm{d} \boldsymbol{x}(t)}{\mathrm{d} t}
$$

Jacobian

Forward kinematics:

$$
\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))
$$

Jacobian:

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =\frac{\mathrm{d} \boldsymbol{x}(t)}{\mathrm{d} t} \\
& =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \frac{\mathrm{d} \boldsymbol{q}(t)}{\mathrm{d} t}
\end{aligned}
$$

Jacobian

Forward kinematics:

$$
\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))
$$

Jacobian:

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =\frac{\mathrm{d} \boldsymbol{x}(t)}{\mathrm{d} t} \\
& =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \frac{\mathrm{d} \boldsymbol{q}(t)}{\mathrm{d} t} \\
& =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}
\end{aligned}
$$

Jacobian

Forward kinematics:

$$
\boldsymbol{x}(t)=f_{\mathrm{fk}}(\boldsymbol{q}(t))
$$

Jacobian:

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =\frac{\mathrm{d} \boldsymbol{x}(t)}{\mathrm{d} t} \\
& =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \frac{\mathrm{d} \boldsymbol{q}(t)}{\mathrm{d} t} \\
& =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}} \\
& =J(\boldsymbol{q}) \dot{\boldsymbol{q}} \\
J(\boldsymbol{q}) & =\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}
\end{aligned}
$$

- FK: $\boldsymbol{q}=\left(\theta_{1}, \theta_{2}\right)^{\top} \rightarrow(x, y)^{\top}$

- FK: $\boldsymbol{q}=\left(\theta_{1}, \theta_{2}\right)^{\top} \rightarrow(x, y)^{\top}$
- $x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)$
- $y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)$

- $\dot{\boldsymbol{x}}=$?
- FK: $\boldsymbol{q}=\left(\theta_{1}, \theta_{2}\right)^{\top} \rightarrow(x, y)^{\top}$
- $x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)$
- $y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)$

- $\dot{x}=$?
- $\dot{x}_{1}=-L_{1} \dot{\theta}_{1} \sin \theta_{1}-L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right)$
- $\dot{y}_{1}=L_{1} \dot{\theta}_{1} \cos \theta_{1}+L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}\right)$

Planar robot example

- FK: $\boldsymbol{q}=\left(\theta_{1}, \theta_{2}\right)^{\top} \rightarrow(x, y)^{\top}$
- $x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)$
- $y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)$

- $\dot{x}=$?
- $\dot{x}_{1}=-L_{1} \dot{\theta}_{1} \sin \theta_{1}-L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \sin \left(\theta_{1}+\theta_{2}\right)$
- $\dot{y}_{1}=L_{1} \dot{\theta}_{1} \cos \theta_{1}+L_{2}\left(\dot{\theta}_{1}+\dot{\theta}_{2}\right) \cos \left(\theta_{1}+\theta_{2}\right)$
- $J(\boldsymbol{q})=\left(\begin{array}{cc}-L_{1} \sin \theta_{1}-L_{2} \sin \left(\theta_{1}+\theta_{2}\right) & -L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\ L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) & L_{2} \cos \left(\theta_{1}+\theta_{2}\right)\end{array}\right)$
- Jacobian depends on the configuration \boldsymbol{q}

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{\mathrm{fk}}(\boldsymbol{q})}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space:

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space: 2×2
- 2 DoF robot with $S E(2)$ task space:

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space: 2×2
- 2 DoF robot with $S E(2)$ task space: 3×2
- 5 DoF robot with $S E(2)$ task space:

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space: 2×2
- 2 DoF robot with $S E(2)$ task space: 3×2
- 5 DoF robot with $S E(2)$ task space: 3×5
- 6 DoF robot with $S E(3)$ task space:

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space: 2×2
- 2 DoF robot with $S E(2)$ task space: 3×2
- 5 DoF robot with $S E(2)$ task space: 3×5
- 6 DoF robot with $S E(3)$ task space: 6×6
- 7 DoF robot with $S E(3)$ task space:

Jacobian dimension

- $J(\boldsymbol{q})=\frac{\partial f_{f_{\mathrm{k}}(\boldsymbol{q})}^{\partial \boldsymbol{q}}}{\partial \boldsymbol{q}} \in \mathbb{R}^{M \times N}$
- M task-space DoF
- N joint-space DoF
- Redundant robots: $N>M$
- Under-actuated robots: $N<M$
- 2 DoF robot with translation task space: 2×2
- 2 DoF robot with $S E(2)$ task space: 3×2
- 5 DoF robot with $S E(2)$ task space: 3×5
- 6 DoF robot with $S E(3)$ task space: 6×6
- 7 DoF robot with $S E(3)$ task space: 6×7

Jacobian properties

- $J(\boldsymbol{q})=\left(\begin{array}{ll}J_{1}(\boldsymbol{q}) & J_{2}(\boldsymbol{q})\end{array}\right)$
- First column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{\top}$
- Second column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{\top}$
- $\dot{\boldsymbol{x}}=\boldsymbol{v}_{\text {tip }}=J_{1}(\boldsymbol{q}) \dot{\theta}_{1}+J_{2}(\boldsymbol{q}) \dot{\theta}_{2}$

Jacobian properties

- $J(\boldsymbol{q})=\left(\begin{array}{ll}J_{1}(\boldsymbol{q}) & J_{2}(\boldsymbol{q})\end{array}\right)$
- First column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{\top}$
- Second column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{\top}$
- $\dot{\boldsymbol{x}}=\boldsymbol{v}_{\text {tip }}=J_{1}(\boldsymbol{q}) \dot{\theta}_{1}+J_{2}(\boldsymbol{q}) \dot{\theta}_{2}$
- We can generate tip velocity in any direction if $J_{1}(\boldsymbol{q})$ and $J_{2}(\boldsymbol{q})$ are not collinear
- when they are collinear?

Jacobian properties

- $J(\boldsymbol{q})=\left(\begin{array}{ll}J_{1}(\boldsymbol{q}) & J_{2}(\boldsymbol{q})\end{array}\right)$
- First column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{\top}$
- Second column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{\top}$
- $\dot{\boldsymbol{x}}=\boldsymbol{v}_{\text {tip }}=J_{1}(\boldsymbol{q}) \dot{\theta}_{1}+J_{2}(\boldsymbol{q}) \dot{\theta}_{2}$
- We can generate tip velocity in any direction if $J_{1}(\boldsymbol{q})$ and $J_{2}(\boldsymbol{q})$ are not collinear
- when they are collinear?e.g. $\theta_{2}=0$

Jacobian properties

- $J(\boldsymbol{q})=\left(\begin{array}{ll}J_{1}(\boldsymbol{q}) & J_{2}(\boldsymbol{q})\end{array}\right)$
- First column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{\top}$
- Second column corresponds to the end-point velocity for $\dot{\boldsymbol{q}}=\left(\begin{array}{ll}0 & 1\end{array}\right)^{\top}$
- $\dot{\boldsymbol{x}}=\boldsymbol{v}_{\text {tip }}=J_{1}(\boldsymbol{q}) \dot{\theta}_{1}+J_{2}(\boldsymbol{q}) \dot{\theta}_{2}$
- We can generate tip velocity in any direction if $J_{1}(\boldsymbol{q})$ and $J_{2}(\boldsymbol{q})$ are not collinear
- when they are collinear?e.g. $\theta_{2}=0$
- Jacobian is singular matrix \rightarrow configurations are called singularities
- rank of Jacobian is not maximal
- end-effector is unable to generate velocity in a certain direction

Jacobian columns visualization

How to compute jacobian numerically

- Finite difference method
- $f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}, \quad \delta \rightarrow 0$

How to compute jacobian numerically

- Finite difference method
- $f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}, \quad \delta \rightarrow 0$
$-J=\left(\begin{array}{lll}\frac{\partial x}{\partial q_{0}} & \frac{\partial x}{\partial q_{1}} & \cdots \\ \frac{\partial y}{\partial q_{0}} & \frac{\partial y}{\partial q_{1}} & \cdots \\ \frac{\partial \theta}{\partial q_{0}} & \frac{\partial \theta}{\partial q_{1}} & \cdots\end{array}\right)$

How to compute jacobian numerically

- Finite difference method
- $f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}, \quad \delta \rightarrow 0$
$>J=\left(\begin{array}{lll}\frac{\partial x}{\partial q_{0}} & \frac{\partial x}{\partial q_{1}} & \cdots \\ \frac{\partial y}{\partial q_{0}} & \frac{\partial y}{\partial q_{1}} & \cdots \\ \frac{\partial \theta}{\partial q_{0}} & \frac{\partial \theta}{\partial q_{1}} & \ldots\end{array}\right)$
$-\frac{\partial x}{\partial q_{0}}(\boldsymbol{q}) \approx \frac{f_{\mathrm{fk}, \mathrm{x}}(\boldsymbol{q}+\boldsymbol{\delta})-f_{\mathrm{fk}, \mathrm{x}}(\boldsymbol{q})}{\delta}, \quad \boldsymbol{\delta}=\left(\begin{array}{lll}\delta & 0 & \cdots\end{array}\right)^{\top}$
- Repeat for every element of J

How to compute jacobian numerically

- Finite difference method
- $f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta}, \quad \delta \rightarrow 0$
$-J=\left(\begin{array}{lll}\frac{\partial x}{\partial q_{0}} & \frac{\partial x}{\partial q_{1}} & \cdots \\ \frac{\partial y}{\partial q_{0}} & \frac{\partial y}{\partial q_{1}} & \cdots \\ \frac{\partial \theta}{\partial q_{0}} & \frac{\partial \theta}{\partial q_{1}} & \cdots\end{array}\right)$
$-\frac{\partial x}{\partial q_{0}}(\boldsymbol{q}) \approx \frac{f_{\mathrm{fk}, \mathrm{x}}(\boldsymbol{q}+\boldsymbol{\delta})-f_{\mathrm{fk}, \mathrm{x}}(\boldsymbol{q})}{\delta}, \quad \boldsymbol{\delta}=\left(\begin{array}{lll}\delta & 0 & \cdots\end{array}\right)^{\top}$
- Repeat for every element of J
- Slow to compute, easy to implement \rightarrow used in testing

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame
- $\boldsymbol{t}_{J E}$ - translation part of $T_{J E} \in S E(2)$

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame
- $\boldsymbol{t}_{J E}$ - translation part of $T_{J E} \in S E(2)$
- $\boldsymbol{n}=R(90) \boldsymbol{t}_{J E}$ - perpendicular vector

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame
- $\boldsymbol{t}_{J E}$ - translation part of $T_{J E} \in S E(2)$
- $\boldsymbol{n}=R(90) \boldsymbol{t}_{J E}$ - perpendicular vector
- $\boldsymbol{n}_{S}=R_{S J} \boldsymbol{n}$ - change of reference frame

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame
- $\boldsymbol{t}_{J E}$ - translation part of $T_{J E} \in S E(2)$
- $\boldsymbol{n}=R(90) \boldsymbol{t}_{J E}$ - perpendicular vector
- $\boldsymbol{n}_{S}=R_{S J} \boldsymbol{n}$ - change of reference frame
- For prismatic joints: $\boldsymbol{n}_{S}=R_{S J} \boldsymbol{a}$
- \boldsymbol{a} is axis of translation

How to compute jacobian analytically

- $J=\left(\begin{array}{ll}J_{v} & J_{w}\end{array}\right)^{\top}$ i.e. translation and rotation part

- Translation part:
- i-th column $\left(\boldsymbol{n}_{S}\right)$ is perpendicular to vector \boldsymbol{t}, connecting i-th joint to end-effector
- S - reference frame, J - frame attached to i-th joint, E end-effector frame
- $\boldsymbol{t}_{J E}$ - translation part of $T_{J E} \in S E(2)$
- $\boldsymbol{n}=R(90) \boldsymbol{t}_{J E}$ - perpendicular vector
- $\boldsymbol{n}_{S}=R_{S J} \boldsymbol{n}$ - change of reference frame
- For prismatic joints: $\boldsymbol{n}_{S}=R_{S J} \boldsymbol{a}$
- \boldsymbol{a} is axis of translation
- Rotation part
- 1 for revolute joints
- 0 for prismatic joints

Jacobian application - velocity limits

- $\dot{\boldsymbol{x}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- Velocity limits are given for each joint
- configuration independent

Jacobian application - velocity limits

- $\dot{\boldsymbol{x}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- Velocity limits are given for each joint
- configuration independent
- What are the velocity we can achieve with end-effector?
- depends on configuration
- use jacobian to map joint-space velocity to task-space velocity

Manipulability ellipsoid

- Unit circle in joint velocity space, i.e. $\|\dot{\boldsymbol{q}}\|=1$
- Mapping through Jacobian to ellipsoid in end-effector space
- Closer the ellipsoid is to sphere, more easily can end-effector move in arbitrary direction

How to compute manipulability ellipsoid

$$
1=\|\dot{\boldsymbol{q}}\|
$$

How to compute manipulability ellipsoid

$$
\begin{aligned}
1 & =\|\dot{\boldsymbol{q}}\| \\
& =\dot{\boldsymbol{q}}^{\top} \dot{\boldsymbol{q}}
\end{aligned}
$$

How to compute manipulability ellipsoid

- If $J(\boldsymbol{q})$ is non-singular

$$
\begin{aligned}
1 & =\|\dot{\boldsymbol{q}}\| \\
& =\dot{\boldsymbol{q}}^{\top} \dot{\boldsymbol{q}} \\
& =\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right)^{\top}\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right)
\end{aligned}
$$

How to compute manipulability ellipsoid

- If $J(\boldsymbol{q})$ is non-singular

$$
\begin{aligned}
1 & =\|\dot{\boldsymbol{q}}\| \\
& =\dot{\boldsymbol{q}}^{\top} \dot{\boldsymbol{q}} \\
& =\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right)^{\top}\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right) \\
& =\dot{\boldsymbol{x}}^{\top} J(\boldsymbol{q})^{-\top} J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}
\end{aligned}
$$

How to compute manipulability ellipsoid

- If $J(\boldsymbol{q})$ is non-singular

$$
\begin{aligned}
1 & =\|\dot{\boldsymbol{q}}\| \\
& =\dot{\boldsymbol{q}}^{\top} \dot{\boldsymbol{q}} \\
& =\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right)^{\top}\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right) \\
& =\dot{\boldsymbol{x}}^{\top} J(\boldsymbol{q})^{-\top} J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}} \\
& =\dot{\boldsymbol{x}}^{\top}\left(J(\boldsymbol{q}) J(\boldsymbol{q})^{\top}\right)^{-1} \dot{\boldsymbol{x}}
\end{aligned}
$$

How to compute manipulability ellipsoid

- If $J(\boldsymbol{q})$ is non-singular
- Solution to $\boldsymbol{u}^{\top} A^{-1} \boldsymbol{u}=1$ is ellipsoid
- eigen vectors of A show directions of principal axes of the ellipsoid
- square roots of eigen values are lengths of the principal axis

$$
\begin{aligned}
1 & =\|\dot{\boldsymbol{q}}\| \\
& =\dot{\boldsymbol{q}}^{\top} \dot{\boldsymbol{q}} \\
& =\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right)^{\top}\left(J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}}\right) \\
& =\dot{\boldsymbol{x}}^{\top} J(\boldsymbol{q})^{-\top} J(\boldsymbol{q})^{-1} \dot{\boldsymbol{x}} \\
& =\dot{\boldsymbol{x}}^{\top}\left(J(\boldsymbol{q}) J(\boldsymbol{q})^{\top}\right)^{-1} \dot{\boldsymbol{x}}
\end{aligned}
$$

Manipulability ellipsoid example

- 2 DoF robot, translation only, eig $\left(J J^{\top}\right)$

How close we are to singularity?

- Condition number of $J J^{\top}$
- $\mu_{1}=\frac{\lambda_{\max }\left(J J^{\top}\right)}{\lambda_{\min }\left(J J^{\top}\right)} \geq 1$
- λ is eigen value of a given matrix
- the larger μ_{1} is, the closer to singularity we are
- Small μ_{1} is preferred

How close we are to singularity?

- Condition number of $J J^{\top}$
- $\mu_{1}=\frac{\lambda_{\max }\left(J J^{\top}\right)}{\lambda_{\min }\left(J J^{\top}\right)} \geq 1$
- λ is eigen value of a given matrix
- the larger μ_{1} is, the closer to singularity we are
- Small μ_{1} is preferred
- Volume of manipulability ellipsoid
- the smaller volume is, the closer to singularity we are
- $\mu_{2}=\sqrt{\lambda_{1} \lambda_{2} \cdots}=\operatorname{det}\left(J J^{\top}\right)$
- Large μ_{2} is preferred

How close we are to singularity?

$$
\begin{aligned}
& \mu_{1}=7.2522 \\
& y_{2}=0.2499
\end{aligned}
$$

- Condition number of $J J^{\top}$
- $\mu_{1}=\frac{\lambda_{\max }\left(J J^{\top}\right)}{\lambda_{\min }\left(J J^{\top}\right)} \geq 1$
- λ is eigen value of a given matrix
- the larger μ_{1} is, the closer to singularity we are
- Small μ_{1} is preferred
- Volume of manipulability ellipsoid
- the smaller volume is, the closer to singularity we are
- $\mu_{2}=\sqrt{\lambda_{1} \lambda_{2} \cdots}=\operatorname{det}\left(J J^{\top}\right)$
- Large μ_{2} is preferred

Redundant robots and singularities

Null-space of jacobian

- $\operatorname{Null}(A)=\operatorname{ker}(A)=\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}\}$

Null-space of jacobian

- $\operatorname{Null}(A)=\operatorname{ker}(A)=\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}\}$
- Find $\dot{\boldsymbol{q}}$ s.t. $\dot{\boldsymbol{x}}=\mathbf{0}$
- $\dot{\boldsymbol{q}}_{\text {null }} \in \operatorname{ker}(J)$

Null-space of jacobian

- $\operatorname{Null}(A)=\operatorname{ker}(A)=\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}\}$
- Find $\dot{\boldsymbol{q}}$ s.t. $\dot{\boldsymbol{x}}=\mathbf{0}$
- $\dot{\boldsymbol{q}}_{\text {null }} \in \operatorname{ker}(J)$

Null-space of jacobian

- $\operatorname{Null}(A)=\operatorname{ker}(A)=\{\boldsymbol{x} \mid A \boldsymbol{x}=\mathbf{0}\}$
- Find $\dot{\boldsymbol{q}}$ s.t. $\dot{\boldsymbol{x}}=\mathbf{0}$
- $\dot{\boldsymbol{q}}_{\text {null }} \in \operatorname{ker}(J)$
- there are multiple solutions if we have more DoF

Statics analysis

- Conservation of power: (power at the joints) $=$ (power to move the robot) + (power at the end-effector)

Statics analysis

- Conservation of power: (power at the joints) $=$ (power to move the robot) + (power at the end-effector)
- Static equilibrium: no power is used to move the robot, i.e. no motion

Statics analysis

- Conservation of power: (power at the joints) $=($ power to move the robot $)+($ power at the end-effector)
- Static equilibrium: no power is used to move the robot, i.e. no motion
- (power at the joints) $=$ (power at the end-effector)
- $\boldsymbol{\tau}^{\top} \dot{\boldsymbol{q}}=F^{\top} \dot{\boldsymbol{x}}$
- $\boldsymbol{\tau}$ joint torques
- $\dot{\boldsymbol{q}}$ joint velocities
- F end-effector force
- $\dot{\boldsymbol{x}}$ end-effector velocity

Statics analysis

- Conservation of power: (power at the joints) $=($ power to move the robot $)+($ power at the end-effector)
- Static equilibrium: no power is used to move the robot, i.e. no motion
- (power at the joints) $=$ (power at the end-effector)
$-\boldsymbol{\tau}^{\top} \dot{\boldsymbol{q}}=F^{\top} \dot{\boldsymbol{x}}$
- $\boldsymbol{\tau}$ joint torques
- $\dot{\boldsymbol{q}}$ joint velocities
- F end-effector force
- \dot{x} end-effector velocity
- $\dot{\boldsymbol{x}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- $\boldsymbol{\tau}^{\top}=F^{\top} J(\boldsymbol{q})$

Statics analysis

- Conservation of power: (power at the joints) $=($ power to move the robot $)+($ power at the end-effector)
- Static equilibrium: no power is used to move the robot, i.e. no motion
- (power at the joints) $=$ (power at the end-effector)
- $\boldsymbol{\tau}^{\top} \dot{\boldsymbol{q}}=F^{\top} \dot{\boldsymbol{x}}$
- $\boldsymbol{\tau}$ joint torques
- $\dot{\boldsymbol{q}}$ joint velocities
- F end-effector force
- \dot{x} end-effector velocity
- $\dot{\boldsymbol{x}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- $\boldsymbol{\tau}^{\top}=F^{\top} J(\boldsymbol{q})$
- $\boldsymbol{\tau}=J(\boldsymbol{q})^{\top} F$

Statics - compensating external force

- Consider external force applied to the end-effector is $-F$.
- How to compute joint torques s.t. robot is static?

Statics - compensating external force

- Consider external force applied to the end-effector is $-F$.
- How to compute joint torques s.t. robot is static?
- $\boldsymbol{\tau}_{\text {ext }}=J(\boldsymbol{q})^{\top} F$
- end-effector needs to generate force F to compensate external $-F$

Statics - compensating external force

- Consider external force applied to the end-effector is $-F$.
- How to compute joint torques s.t. robot is static?
- $\boldsymbol{\tau}_{\text {ext }}=J(\boldsymbol{q})^{\top} F$
- end-effector needs to generate force F to compensate external $-F$
- this equation assumes gravity does not act on a robot
- $\boldsymbol{\tau}=\boldsymbol{\tau}_{\text {ext }}+\boldsymbol{\tau}_{g}$
$-\tau_{g}$ compensates gravity acting on a robot

Statics - compensating external force

- Consider external force applied to the end-effector is $-F$.
- How to compute joint torques s.t. robot is static?
- $\boldsymbol{\tau}_{\text {ext }}=J(\boldsymbol{q})^{\top} F$
- end-effector needs to generate force F to compensate external $-F$
- this equation assumes gravity does not act on a robot
$>\boldsymbol{\tau}=\boldsymbol{\tau}_{\mathrm{ext}}+\boldsymbol{\tau}_{g}$
$-\boldsymbol{\tau}_{g}$ compensates gravity acting on a robot
- For Panda robot, you can directly command $\tau_{\text {ext }}$

Force caused by given torques

- If J is invertible (when it is invertible?)
- $F=J(\boldsymbol{q})^{-\top} \boldsymbol{\tau}$

Force caused by given torques

- If J is invertible (when it is invertible?)
- $F=J(\boldsymbol{q})^{-\top} \boldsymbol{\tau}$
- Redundant robots
- even for fixed end-effector we can have internal motion
- static equilibrium assumption is not valid \rightarrow dynamics needed

Force caused by given torques

- If J is invertible (when it is invertible?)
- $F=J(\boldsymbol{q})^{-\top} \boldsymbol{\tau}$
- Redundant robots
- even for fixed end-effector we can have internal motion
- static equilibrium assumption is not valid \rightarrow dynamics needed
- Under-actuated robots
- fixed end-effector will immobilize the robot
- robot cannot actively generate forces in null-space of $J^{\top}: \operatorname{ker}\left(J^{\top}\right)=\left\{F \mid J^{\top} F=\mathbf{0}\right\}$
- however, robot can resist external force in the null-space without moving

Force caused by given torques

- If J is invertible (when it is invertible?)
- $F=J(\boldsymbol{q})^{-\top} \boldsymbol{\tau}$
- Redundant robots
- even for fixed end-effector we can have internal motion
- static equilibrium assumption is not valid \rightarrow dynamics needed
- Under-actuated robots
- fixed end-effector will immobilize the robot
r robot cannot actively generate forces in null-space of $J^{\top}: \operatorname{ker}\left(J^{\top}\right)=\left\{F \mid J^{\top} F=\mathbf{0}\right\}$
- however, robot can resist external force in the null-space without moving
- red arrow shows null-space

Force caused by given torques

- If J is invertible (when it is invertible?)
- $F=J(\boldsymbol{q})^{-\top} \boldsymbol{\tau}$
- Redundant robots
- even for fixed end-effector we can have internal motion
- static equilibrium assumption is not valid \rightarrow dynamics needed
- Under-actuated robots
- fixed end-effector will immobilize the robot
- robot cannot actively generate forces in null-space of $J^{\top}: \operatorname{ker}\left(J^{\top}\right)=\left\{F \mid J^{\top} F=\mathbf{0}\right\}$
- however, robot can resist external force in the null-space without moving
- red arrow shows null-space
- Singularities (square J, but non-invertible)
- non-zero null-space

Force ellipsoid

- How easy is to generate force in a given direction.
- Eigen analysis of $\left(J J^{\top}\right)^{-1}$
- Blue - manipulability ellipsoid (i.e. $J J^{\top}$)
- Green - force ellipsoid (i.e. $\left(J J^{\top}\right)^{-1}$)
- Easy motion in a direction \rightarrow difficult to compensate force in that direction
- Close to singularity:
- area of manipulability ellipsoid $\rightarrow 0$
- area of force ellipsoid $\rightarrow \infty$

Summary

- Differential kinematics
- Jacobian and its properties
- How to compute Jacobian
- Manipulability ellipsoids
- How to measure distance to singularity
- Statics
- Static equilibrium relation of joint torques and task-space forces
- Force ellipsoids

Laboratory

- Implementation of jacobian computation for planar manipulator
- Finite difference method
- Analytical method
- Generování of movement in null-space

