- ||CTU
R

UNIVERSITY
IN PRAGUE

Robotics: Differential Kinematics and Statics

Vladimir Petrik
vladimir.petrik@cvut.cz

09.10.2023

Motivation

Robotics: Differential Kinematics and Statics
Vladimir Petrik 2/23

Differential kinematics

> We know how to compute end-effector pose from the configuration

forward kinematics

2(t) = fala(t))

x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R?, R? for position only
q(t) € RY is configuration (joint space)

t represents time

vVvVvyyVvyy

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 3/23

Differential kinematics

> We know how to compute end-effector pose from the configuration

forward kinematics

z(t) = fu(q(t))

x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R?, R? for position only
q(t) € RY is configuration (joint space)

Pt represents time

vvyyvyy

> Differential kinematics
> relates end-effector velocity to joint velocities
> g =2t ¢ gM
> Jacobian of the manipulator is core structure in the analysis

RL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 3/23

Jacobian

Forward kinematics:
x(t) = fa(q(t))

Jacobian:

da(t
dt

~—

‘ﬂ-?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 4 /23

Jacobian

Forward kinematics:

z(t) = fa(q(t))

Jacobian:
. dx(1)
TTq
_ Ofa(q) dq(t)
0q dt

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Viadimir Petrik 4 /23

Jacobian

Forward kinematics:

z(t) = fa(q(t))
Jacobian:

da(t
dt¢

_ Ofw(q) dq(?)

Y dt

_ Ofu(aq) .

= 94 q

~—

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Viadimir Petrik 4 /23

Jacobian

Forward kinematics:

z(t) = fa(q(t))
Jacobian:

da(t)
dt
dfw(q) dg(t)

0q dt
_ Ofu(aq) .
= 8q q
= J(q)q

€T =

J(q) = —8fgk(§q) e RM*N

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Viadimir Petrik 4 /23

Planar robot example

> FK:ig= (61,02)" — (z,y)"

‘ﬂ-?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 5/23

Planar robot example

> FK: g = (01,602)" — (2,9)"
> o= Lycosf; + Lo cos(fr + 02)
> y = Lisin6; + Losin(6; + 62)
> =7

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 5/23

Planar robot example

> FK:g=(01,02)" — (z,9)"
> o= Lycosf; + Lo cos(fr + 02)
> y = Lisin6; + Losin(6; + 62)
> =7
> i = _Llél sin 6, — LQ.(él + 02) sin(91 + 02)
> ’91 = L101 COS 01 -+ L2(91 + 02) 008(01 + 02)

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 5/23

Planar robot example

> FK: g = (01,602)" — (2,9)"
> o= Lycosf; + Lo cos(fr + 02)
> y = Lisin6; + Losin(6; + 62)
> =7
> = 7L'19.1 sin 61 — LQ.(él + 92) sin(91 + 02)
> ’91 = L101 COS 01 -+ L2(91 + 02) COS(Gl + 92)
> J(Q) _ —Lq1sinf; — Lo sin(91 + 92) —Lo sin(91 + 92))
Lycosby + Lycos(61 + 02) Locos(6y + 62)
> Jacobian depends on the configuration g

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 5/23

Jacobian dimension

> J(q) = 3fg(§¢1) c RMxN

» M task-space DoF
» N joint-space DoF

“&?p/‘ Robc_)ti(fs: Differential Kinematics and Statics
YWY Viadimir Petrik

6 /23

Jacobian dimension

> J(q) = 3fg(§<1) c RMxN
» M task-space DoF
» N joint-space DoF

» Redundant robots: N > M

‘ﬂ-?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 6 /23

Jacobian dimension

= 5L
M task-space DoF
N joint-space DoF
Redundant robots: N > M

Under-actuated robots: N < M

J(q) _ Ofal(q) e RMxN

vVvyyvyyVvyy

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 6 /23

Jacobian dimension

J(q) = YD ¢ RN

M task-space DoF

N joint-space DoF

Redundant robots: N > M
Under-actuated robots: N < M

vVvyVvyVvyyvyy

2 DoF robot with translation task space:

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 6 /23

Jacobian dimension

J(q) 8ffk(q) e RMxN

M task- space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SFE(2) task space:

vVvyVvyVvyvVvyYvyy

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/ Vladimir Petrik 6 /23

Jacobian dimension

J(q) = 2da) ¢ RMXN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SFE(2) task space:

vVVvyVYyVvyVvYyVvYYVvyyYy

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 6 /23

Jacobian dimension

J(q) = 2da) ¢ RMXN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space:

VVyVYyVYyVYVYVYYVYY

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 6 /23

Jacobian dimension

J(q) = 2da) ¢ RMXN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space: 6 x 6

7 DoF robot with SE(3) task space:

VVYyVYVYVYVVVYVYY

RL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 6 /23

Jacobian dimension

J(q) = 2da) ¢ RMXN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space: 6 x 6

7 DoF robot with SE(3) task space: 6 x 7

VVYyVYVYVYVVVYVYY

RL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 6 /23

Jacobian properties

> J(q) = (Ji(q) J2(q))
» First column corresponds to the end-point velocity for g = (1 O)T
» Second column corresponds to the end-point velocity for ¢ = (O 1)T

> & = vip = Ji(q)01 + J2(q)f>

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 7/23

Jacobian properties

J(q) = (N1(q) J2(q))

First column corresponds to the end-point velocity for g = (1 ())T

€T = Vtip = Jl(q)él + Jg(q)ég
We can generate tip velocity in any direction if Ji(q) and Ja2(q) are not collinear
> when they are collinear?

>
| 4
» Second column corresponds to the end-point velocity for g = (O 1)T
>
| 4

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 7/23

Jacobian properties

J(q) = (N1(q) J2(q))

First column corresponds to the end-point velocity for g = (1 ())T

& = vip = J1(q)01 + J2(q)b2
We can generate tip velocity in any direction if Ji(q) and Ja2(q) are not collinear
> when they are collinear?e.g. 5 =0

>
| 4
» Second column corresponds to the end-point velocity for g = (O 1)T
>
| 4

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 7/23

Jacobian properties

J(q) = (Ji(q) J2(q))

First column corresponds to the end-point velocity for g = (1 ())T

& = vip = J1(q)01 + J2(q)b2

We can generate tip velocity in any direction if Ji(q) and Ja2(q) are not collinear
> when they are collinear?e.g. 5 =0

Jacobian is singular matrix — configurations are called singularities

rank of Jacobian is not maximal

end-effector is unable to generate velocity in a certain direction

>
| 4
» Second column corresponds to the end-point velocity for g = (O 1)T
>
| 4

vvyy

RL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 7/23

Jacobian columns visualization

f@?‘ Robotics: Differential Kinematics and Statics

Vladimir Petrik 8/23

How to compute jacobian numerically

» Finite difference method
> f(zo) o Let)=io) 5 g

‘ﬂ.ﬁ/‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 9 /23

How to compute jacobian numerically

» Finite difference method
> f(zo) o Let)=io) 5 g

Oz Ox
dqo 9q1
> J— g_y g_?!
G o0
0 Oq1
‘ﬂ.?p/‘ Robotics: Differential Kinematics and Statics
9 /23

[YFS Viadimir Petrik

How to compute jacobian numerically

» Finite difference method
> f(zo) o Let)=io) 5 g

Oz Oz
dqo Og
S A
G G
dq0 Oq1

0. ~ /i ,x(q'Hs)_f ,x(q)
> O (g) n fi) i

9q0

» Repeat for every element of J

..)T

o)
lhs

2 Robotics: Differential Kinematics and Statics
Vladimir Petrik

9/23

How to compute jacobian numerically

v

Finite difference method
> f(zo) o Let)=io) 5 g

Oz Ox
dqo Og
N
=13)
G G
dq0 Oq1
oz
90 (@

Repeat for every element of J
Slow to compute, easy to implement — used in testing

~ Jx(g+0)— frx(q)
) R T

..)T

o)
lhs

2 Robotics: Differential Kinematics and Statics

Vladimir Petrik

9/23

How to compute jacobian analytically

—J2(0)
T . . .
> J= (JU Jw) i.e. translation and rotation part _1(0)
» Translation part:
> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 10 / 23

How to compute jacobian analytically

—J2(0)
T . . .
> J= (JU Jw) i.e. translation and rotation part _1(0)
» Translation part:
> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
» S - reference frame, J - frame attached to i-th joint, E end-effector frame
‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 10 / 23

How to compute jacobian analytically

—Jo(0)

T . . .
> J= (JU Jw) i.e. translation and rotation part
» Translation part:

> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
» S - reference frame, J - frame attached to i-th joint, E end-effector frame
> t;g - translation part of T;p € SE(2)

—J1(0)

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 10 / 23

How to compute jacobian analytically

—Jo(0)

T . . .
> J= (JU Jw) i.e. translation and rotation part
» Translation part:

—J1(0)

> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
» S - reference frame, J - frame attached to i-th joint, E end-effector frame

> t;p - translation part of T € SE(2)

> n = R(90)t,;E - perpendicular vector

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 10 / 23

How to compute jacobian analytically

> J =

—Jo(0)

T . : .
(JU Jw) i.e. translation and rotation part _1(0)

» Translation part:

>

vVvyvyy

i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
S - reference frame, J - frame attached to i-th joint, E end-effector frame

tsg - translation part of Ty € SE(2)

n = R(90)t g - perpendicular vector

ng = Rgyn - change of reference frame

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 10 / 23

How to compute jacobian analytically

> J =

—Jo(0)

T . : .
(JU Jw) i.e. translation and rotation part _1(0)

» Translation part:

>

>
>
>
>
>
>

i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
S - reference frame, J - frame attached to i-th joint, E end-effector frame

tsg - translation part of Ty € SE(2)

n = R(90)t g - perpendicular vector

ng = Rgyn - change of reference frame

For prismatic joints: ng = Rgja

a is axis of translation

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 10 / 23

How to compute jacobian analytically

> J =

—Jo(0)

T . : .
(JU Jw) i.e. translation and rotation part _1(0)

» Translation part:

>

vVvVvyyvyy

>

i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
S - reference frame, J - frame attached to i-th joint, E end-effector frame

tsg - translation part of Ty € SE(2)

n = R(90)t g - perpendicular vector

ng = Rgyn - change of reference frame

For prismatic joints: ng = Rgja

a is axis of translation

» Rotation part

>
>

1 for revolute joints
0 for prismatic joints

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 10 / 23

Jacobian application - velocity limits
> & =J(q)q

» Velocity limits are given for each joint
» configuration independent

02 A

‘ﬂ-?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 11 /23

Jacobian application - velocity limits

> &= J(q)q
» Velocity limits are given for each joint
» configuration independent
> What are the velocity we can achieve with end-effector?

» depends on configuration
» use jacobian to map joint-space velocity to task-space velocity

0y A AL,
B A D
J(6)
> — >
61 T
C D B
C
QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 11 /23

Manipulability ellipsoid

» Unit circle in joint velocity space, i.e. [|q|| =1

» Mapping through Jacobian to ellipsoid in end-effector space

» Closer the ellipsoid is to sphere, more easily can end-effector move in arbitrary
direction

0,

-
@

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 12 /23

How to compute manipulability ellipsoid

1= 14l

9/‘ Robotics: Differential Kinematics and Statics
Vladimir Petrik 13 /23

How to compute manipulability ellipsoid

f@?‘ Robotics: Differential Kinematics and Statics

Vladimir Petrik 13 /23

How to compute manipulability ellipsoid

> If J(q) is non-singular

‘ﬂ.&‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 13 /23

How to compute manipulability ellipsoid

> If J(q) is non-singular

“&?p/‘ Robc_)ti(fs: Differential Kinematics and Statics
YWY Viadimir Petrik

13 /23

How to compute manipulability ellipsoid

> If J(q) is non-singular

“&%‘ Robc_)ti(fs: Differential Kinematics and Statics
YWY Viadimir Petrik 13 /23

How to compute manipulability ellipsoid

> If J(q) is non-singular
» Solution to u' A~ 'u = 1 is ellipsoid

> eigen vectors of A show directions of principal axes of the ellipsoid
> square roots of eigen values are lengths of the principal axis

1=||q|

=q'q
= (J(@) ') (J(g) ')
=& J(q)" ' J(q) &

=47 (J@)(@)7) @

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 13 /23

Manipulability ellipsoid example

» 2 DoF robot, translation only, eig(.J.J ")

‘ﬂ.ﬁ/‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 14 / 23

How close we are to singularity?

» Condition number of J.J
> — Amax(JIT) o
H1= Xm(GTT) =
>)\ is eigen value of a given matrix
> the larger py is, the closer to singularity we are

» Small 1 is preferred

‘ﬂ.?p/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 15/ 23

How close we are to singularity?

» Condition number of JJ T

— Amax(JJ)
> =Sy 21

>)\ is eigen value of a given matrix
> the larger py is, the closer to singularity we are
» Small 1 is preferred
» Volume of manipulability ellipsoid
> the smaller volume is, the closer to singularity we are

> gy =AMy =det (JJT)

> Large sio is preferred

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 15/ 23

How close we are to singularity?

» Condition number of JJ T

— Amax(JJ)
> =Sy 21

>)\ is eigen value of a given matrix
> the larger py is, the closer to singularity we are
» Small 1 is preferred
» Volume of manipulability ellipsoid
> the smaller volume is, the closer to singularity we are

> gy =AMy =det (JJT)

> Large sio is preferred

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 15/ 23

Redundant robots and singularities

f@?‘ Robotics: Differential Kinematics and Statics

Vladimir Petrik 16 / 23

Null-space of jacobian

» Null(A) = ker(A) = {x | Az = 0}

‘ﬂ.ﬁ/‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 17 / 23

Null-space of jacobian

» Null(A) = ker(A) = {x | Az = 0}
> Find g s.t. @ =0
> qnun c ker(J)

‘ﬂ.ﬁ/‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik

17/ 23

Null-space of jacobian

» Null(A) = ker(A) = {x | Az = 0}
> Find g s.t. @ =0
> qnun c ker(J)

‘ﬂ.ﬁ/‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 17 / 23

Null-space of jacobian

» Null(A) = ker(A) = {x | Az = 0}
» Findgst. =0
> Gnun € ker(J)
» there are multiple solutions if we have more DoF

“&%‘ Robc_)ti(fs: Differential Kinematics and Statics
YWY Viadimir Petrik 17 / 23

Statics analysis

> Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 18 / 23

Statics analysis

> Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 18 / 23

Statics analysis

> Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)
> Static equilibrium: no power is used to move the robot, i.e. no motion
> (power at the joints) = (power at the end-effector)
> rlg=F'x
T joint torques
q joint velocities
F' end-effector force
& end-effector velocity

vyvyy

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 18 / 23

Statics analysis

> Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion
> (power at the joints) = (power at the end-effector)
> rlg=F'x

T joint torques

q joint velocities

F' end-effector force

& end-effector velocity

>z =J(q)q

» 7" =F"J(q)

|
>
>
>

RL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 18 / 23

Statics analysis

> Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion

> (power at the joints) = (power at the end-effector)
T - T .

> r'g=F'=z

T joint torques

q joint velocities

F' end-effector force

& end-effector velocity

>z =J(q)q

» T =FTJ(q)

> r=J(q)'F

|
>
>
>

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 18 / 23

Statics - compensating external force

> Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?

‘ﬂ-?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 19 /23

Statics - compensating external force

» Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?
> Tt = J(q)TF
> end-effector needs to generate force F' to compensate external —F

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 19 /23

Statics - compensating external force

> Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?
> Tt = J(q)TF
> end-effector needs to generate force F' to compensate external —F
> this equation assumes gravity does not act on a robot
T = Tex + Ty
> T, compensates gravity acting on a robot

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 19 /23

Statics - compensating external force

> Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?
> Tt = J(q)TF
> end-effector needs to generate force F' to compensate external —F
> this equation assumes gravity does not act on a robot
T = Tex + Ty
> T, compensates gravity acting on a robot

v

For Panda robot, you can directly command Tex:

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 19 /23

Force caused by given torques

» If J is invertible (when it is invertible?)
> F=Jq) T

‘ﬂ.&‘ Robotics: Differential Kinematics and Statics
/ J g Vladimir Petrik 20 / 23

Force caused by given torques

» If J is invertible (when it is invertible?)
> F=Jg) T
» Redundant robots

> even for fixed end-effector we can have internal motion
P static equilibrium assumption is not valid — dynamics needed

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\a"l Vladimir Petrik 20/ 23

Force caused by given torques

» If J is invertible (when it is invertible?)

> F=J(g "
» Redundant robots

» even for fixed end-effector we can have internal motion

P static equilibrium assumption is not valid — dynamics needed
» Under-actuated robots

> fixed end-effector will immobilize the robot
> robot cannot actively generate forces in null-space of J': ker(J ") = {F |JTF = 0}
» however, robot can resist external force in the null-space Wlthout moving

RL?;/‘ Robotics: Differential Kinematics and Statics
/ Vladimir Petrik 20 / 23

Force caused by given torques

» If J is invertible (when it is invertible?) =
> F=J(g "

» Redundant robots
» even for fixed end-effector we can have internal motion
P static equilibrium assumption is not valid — dynamics needed

» Under-actuated robots

> fixed end-effector will immobilize the robot

> robot cannot actively generate forces in null-space of J': ker(J ") = {F |JTF = 0}
» however, robot can resist external force in the null-space Wlthout moving

» red arrow shows null-space

=7
lhs

Robotics: Differential Kinematics and Statics
Vladimir Petrik 20 / 23

Force caused by given torques

» If J is invertible (when it is invertible?) /
T

> F=J(g)"
» Redundant robots
> even for fixed end-effector we can have internal motion
P static equilibrium assumption is not valid — dynamics needed
» Under-actuated robots
> fixed end-effector will immobilize the robot
> robot cannot actively generate forces in null-space of J': ker(J ") = {F |JTF = 0}
» however, robot can resist external force in the null-space Wlthout moving
» red arrow shows null-space
» Singularities (square J, but non-invertible)
» non-zero null-space

RL?;/‘ Robotics: Differential Kinematics and Statics
/ Vladimir Petrik 20 / 23

Force ellipsoid

> How easy is to generate force in a given direction.
> Eigen analysis of (J.JT)~!
> Blue - manipulability ellipsoid (i.e. JJ)
> Green - force ellipsoid (i.e. (JJT)™1)
» Easy motion in a direction — difficult to compensate force in that direction
» Close to singularity:
> area of manipulability ellipsoid — 0
> area of force ellipsoid — oo

RL%;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 21/ 23

Summary

» Differential kinematics

» Jacobian and its properties

> How to compute Jacobian

» Manipulability ellipsoids

» How to measure distance to singularity
> Statics

> Static equilibrium relation of joint torques and task-space forces
» Force ellipsoids

QL?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 22 /23

Laboratory

» Implementation of jacobian computation for planar manipulator

> Finite difference method
> Analytical method

» Generovani of movement in null-space

‘\L?;/‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 23 /23

