
Robotics: Differential Kinematics and Statics

Vladiḿır Petŕık

vladimir.petrik@cvut.cz

09.10.2023



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 2 / 23

Motivation



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 3 / 23

Differential kinematics

▶ We know how to compute end-effector pose from the configuration
▶ forward kinematics
▶ x(t) = ffk(q(t))
▶ x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R2, R3 for position only
▶ q(t) ∈ RN is configuration (joint space)
▶ t represents time

▶ Differential kinematics
▶ relates end-effector velocity to joint velocities
▶ ẋ = dx(t)

dt ∈ RM

▶ Jacobian of the manipulator is core structure in the analysis



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 3 / 23

Differential kinematics

▶ We know how to compute end-effector pose from the configuration
▶ forward kinematics
▶ x(t) = ffk(q(t))
▶ x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R2, R3 for position only
▶ q(t) ∈ RN is configuration (joint space)
▶ t represents time

▶ Differential kinematics
▶ relates end-effector velocity to joint velocities
▶ ẋ = dx(t)

dt ∈ RM

▶ Jacobian of the manipulator is core structure in the analysis



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 4 / 23

Jacobian
Forward kinematics:

x(t) = ffk(q(t))

Jacobian:

ẋ =
dx(t)

dt

=
∂ffk(q)

∂q

dq(t)

dt

=
∂ffk(q)

∂q
q̇

= J(q)q̇

J(q) =
∂ffk(q)

∂q
∈ RM×N



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 4 / 23

Jacobian
Forward kinematics:

x(t) = ffk(q(t))

Jacobian:

ẋ =
dx(t)

dt

=
∂ffk(q)

∂q

dq(t)

dt

=
∂ffk(q)

∂q
q̇

= J(q)q̇

J(q) =
∂ffk(q)

∂q
∈ RM×N



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 4 / 23

Jacobian
Forward kinematics:

x(t) = ffk(q(t))

Jacobian:

ẋ =
dx(t)

dt

=
∂ffk(q)

∂q

dq(t)

dt

=
∂ffk(q)

∂q
q̇

= J(q)q̇

J(q) =
∂ffk(q)

∂q
∈ RM×N



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 4 / 23

Jacobian
Forward kinematics:

x(t) = ffk(q(t))

Jacobian:

ẋ =
dx(t)

dt

=
∂ffk(q)

∂q

dq(t)

dt

=
∂ffk(q)

∂q
q̇

= J(q)q̇

J(q) =
∂ffk(q)

∂q
∈ RM×N



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 5 / 23

Planar robot example

▶ FK: q = (θ1, θ2)
⊤ → (x, y)⊤

▶ x = L1 cos θ1 + L2 cos(θ1 + θ2)
▶ y = L1 sin θ1 + L2 sin(θ1 + θ2)

▶ ẋ = ?
▶ ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)
▶ ẏ1 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2)

▶ J(q) =

(
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

)
▶ Jacobian depends on the configuration q



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 5 / 23

Planar robot example

▶ FK: q = (θ1, θ2)
⊤ → (x, y)⊤

▶ x = L1 cos θ1 + L2 cos(θ1 + θ2)
▶ y = L1 sin θ1 + L2 sin(θ1 + θ2)

▶ ẋ = ?

▶ ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)
▶ ẏ1 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2)

▶ J(q) =

(
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

)
▶ Jacobian depends on the configuration q



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 5 / 23

Planar robot example

▶ FK: q = (θ1, θ2)
⊤ → (x, y)⊤

▶ x = L1 cos θ1 + L2 cos(θ1 + θ2)
▶ y = L1 sin θ1 + L2 sin(θ1 + θ2)

▶ ẋ = ?
▶ ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)
▶ ẏ1 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2)

▶ J(q) =

(
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

)
▶ Jacobian depends on the configuration q



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 5 / 23

Planar robot example

▶ FK: q = (θ1, θ2)
⊤ → (x, y)⊤

▶ x = L1 cos θ1 + L2 cos(θ1 + θ2)
▶ y = L1 sin θ1 + L2 sin(θ1 + θ2)

▶ ẋ = ?
▶ ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)
▶ ẏ1 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2)

▶ J(q) =

(
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

)
▶ Jacobian depends on the configuration q



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space:

2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space:

3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space:

3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space:

6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space:

6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 6 / 23

Jacobian dimension

▶ J(q) = ∂ffk(q)
∂q ∈ RM×N

▶ M task-space DoF

▶ N joint-space DoF

▶ Redundant robots: N > M

▶ Under-actuated robots: N < M

▶ 2 DoF robot with translation task space: 2× 2

▶ 2 DoF robot with SE(2) task space: 3× 2

▶ 5 DoF robot with SE(2) task space: 3× 5

▶ 6 DoF robot with SE(3) task space: 6× 6

▶ 7 DoF robot with SE(3) task space: 6× 7



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 7 / 23

Jacobian properties

▶ J(q) =
(
J1(q) J2(q)

)
▶ First column corresponds to the end-point velocity for q̇ =

(
1 0

)⊤
▶ Second column corresponds to the end-point velocity for q̇ =

(
0 1

)⊤
▶ ẋ = vtip = J1(q)θ̇1 + J2(q)θ̇2

▶ We can generate tip velocity in any direction if J1(q) and J2(q) are not collinear
▶ when they are collinear?e.g. θ2 = 0
▶ Jacobian is singular matrix → configurations are called singularities
▶ rank of Jacobian is not maximal
▶ end-effector is unable to generate velocity in a certain direction



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 7 / 23

Jacobian properties

▶ J(q) =
(
J1(q) J2(q)

)
▶ First column corresponds to the end-point velocity for q̇ =

(
1 0

)⊤
▶ Second column corresponds to the end-point velocity for q̇ =

(
0 1

)⊤
▶ ẋ = vtip = J1(q)θ̇1 + J2(q)θ̇2
▶ We can generate tip velocity in any direction if J1(q) and J2(q) are not collinear

▶ when they are collinear?

e.g. θ2 = 0
▶ Jacobian is singular matrix → configurations are called singularities
▶ rank of Jacobian is not maximal
▶ end-effector is unable to generate velocity in a certain direction



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 7 / 23

Jacobian properties

▶ J(q) =
(
J1(q) J2(q)

)
▶ First column corresponds to the end-point velocity for q̇ =

(
1 0

)⊤
▶ Second column corresponds to the end-point velocity for q̇ =

(
0 1

)⊤
▶ ẋ = vtip = J1(q)θ̇1 + J2(q)θ̇2
▶ We can generate tip velocity in any direction if J1(q) and J2(q) are not collinear

▶ when they are collinear?e.g. θ2 = 0

▶ Jacobian is singular matrix → configurations are called singularities
▶ rank of Jacobian is not maximal
▶ end-effector is unable to generate velocity in a certain direction



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 7 / 23

Jacobian properties

▶ J(q) =
(
J1(q) J2(q)

)
▶ First column corresponds to the end-point velocity for q̇ =

(
1 0

)⊤
▶ Second column corresponds to the end-point velocity for q̇ =

(
0 1

)⊤
▶ ẋ = vtip = J1(q)θ̇1 + J2(q)θ̇2
▶ We can generate tip velocity in any direction if J1(q) and J2(q) are not collinear

▶ when they are collinear?e.g. θ2 = 0
▶ Jacobian is singular matrix → configurations are called singularities
▶ rank of Jacobian is not maximal
▶ end-effector is unable to generate velocity in a certain direction



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 8 / 23

Jacobian columns visualization



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 9 / 23

How to compute jacobian numerically

▶ Finite difference method
▶ f ′(x0) ≈ f(x0+δ)−f(x0)

δ , δ → 0

▶ J =


∂x
∂q0

∂x
∂q1

· · ·
∂y
∂q0

∂y
∂q1

· · ·
∂θ
∂q0

∂θ
∂q1

· · ·


▶ ∂x

∂q0
(q) ≈ ffk,x(q+δ)−ffk,x(q)

δ , δ =
(
δ 0 · · ·

)⊤
▶ Repeat for every element of J

▶ Slow to compute, easy to implement → used in testing



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 9 / 23

How to compute jacobian numerically

▶ Finite difference method
▶ f ′(x0) ≈ f(x0+δ)−f(x0)

δ , δ → 0

▶ J =


∂x
∂q0

∂x
∂q1

· · ·
∂y
∂q0

∂y
∂q1

· · ·
∂θ
∂q0

∂θ
∂q1

· · ·



▶ ∂x
∂q0

(q) ≈ ffk,x(q+δ)−ffk,x(q)
δ , δ =

(
δ 0 · · ·

)⊤
▶ Repeat for every element of J

▶ Slow to compute, easy to implement → used in testing



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 9 / 23

How to compute jacobian numerically

▶ Finite difference method
▶ f ′(x0) ≈ f(x0+δ)−f(x0)

δ , δ → 0

▶ J =


∂x
∂q0

∂x
∂q1

· · ·
∂y
∂q0

∂y
∂q1

· · ·
∂θ
∂q0

∂θ
∂q1

· · ·


▶ ∂x

∂q0
(q) ≈ ffk,x(q+δ)−ffk,x(q)

δ , δ =
(
δ 0 · · ·

)⊤
▶ Repeat for every element of J

▶ Slow to compute, easy to implement → used in testing



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 9 / 23

How to compute jacobian numerically

▶ Finite difference method
▶ f ′(x0) ≈ f(x0+δ)−f(x0)

δ , δ → 0

▶ J =


∂x
∂q0

∂x
∂q1

· · ·
∂y
∂q0

∂y
∂q1

· · ·
∂θ
∂q0

∂θ
∂q1

· · ·


▶ ∂x

∂q0
(q) ≈ ffk,x(q+δ)−ffk,x(q)

δ , δ =
(
δ 0 · · ·

)⊤
▶ Repeat for every element of J

▶ Slow to compute, easy to implement → used in testing



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector

▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame

▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)

▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector

▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame

▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 10 / 23

How to compute jacobian analytically

▶ J =
(
Jv Jw

)⊤
i.e. translation and rotation part

▶ Translation part:
▶ i-th column (nS) is perpendicular to vector t, connecting i-th joint to end-effector
▶ S - reference frame, J - frame attached to i-th joint, E end-effector frame
▶ tJE - translation part of TJE ∈ SE(2)
▶ n = R(90)tJE - perpendicular vector
▶ nS = RSJn - change of reference frame
▶ For prismatic joints: nS = RSJa
▶ a is axis of translation

▶ Rotation part
▶ 1 for revolute joints
▶ 0 for prismatic joints



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 11 / 23

Jacobian application - velocity limits

▶ ẋ = J(q)q̇

▶ Velocity limits are given for each joint
▶ configuration independent

▶ What are the velocity we can achieve with end-effector?

▶ depends on configuration
▶ use jacobian to map joint-space velocity to task-space velocity



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 11 / 23

Jacobian application - velocity limits

▶ ẋ = J(q)q̇

▶ Velocity limits are given for each joint
▶ configuration independent

▶ What are the velocity we can achieve with end-effector?
▶ depends on configuration
▶ use jacobian to map joint-space velocity to task-space velocity



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 12 / 23

Manipulability ellipsoid

▶ Unit circle in joint velocity space, i.e. ∥q̇∥ = 1
▶ Mapping through Jacobian to ellipsoid in end-effector space
▶ Closer the ellipsoid is to sphere, more easily can end-effector move in arbitrary

direction



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥

= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)
= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥
= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)
= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥
= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)

= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥
= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)
= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥
= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)
= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 13 / 23

How to compute manipulability ellipsoid

▶ If J(q) is non-singular

▶ Solution to u⊤A−1u = 1 is ellipsoid
▶ eigen vectors of A show directions of principal axes of the ellipsoid
▶ square roots of eigen values are lengths of the principal axis

1 = ∥q̇∥
= q̇⊤q̇

=
(
J(q)−1ẋ

)⊤ (
J(q)−1ẋ

)
= ẋ⊤J(q)−⊤J(q)−1ẋ

= ẋ⊤
(
J(q)J(q)⊤

)−1
ẋ



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 14 / 23

Manipulability ellipsoid example

▶ 2 DoF robot, translation only, eig(JJ⊤)



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 15 / 23

How close we are to singularity?

▶ Condition number of JJ⊤

▶ µ1 = λmax(JJ
⊤)

λmin(JJ⊤)
≥ 1

▶ λ is eigen value of a given matrix
▶ the larger µ1 is, the closer to singularity we are
▶ Small µ1 is preferred

▶ Volume of manipulability ellipsoid
▶ the smaller volume is, the closer to singularity we are
▶ µ2 =

√
λ1λ2 · · · = det (JJ⊤)

▶ Large µ2 is preferred



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 15 / 23

How close we are to singularity?

▶ Condition number of JJ⊤

▶ µ1 = λmax(JJ
⊤)

λmin(JJ⊤)
≥ 1

▶ λ is eigen value of a given matrix
▶ the larger µ1 is, the closer to singularity we are
▶ Small µ1 is preferred

▶ Volume of manipulability ellipsoid
▶ the smaller volume is, the closer to singularity we are
▶ µ2 =

√
λ1λ2 · · · = det (JJ⊤)

▶ Large µ2 is preferred



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 15 / 23

How close we are to singularity?

▶ Condition number of JJ⊤

▶ µ1 = λmax(JJ
⊤)

λmin(JJ⊤)
≥ 1

▶ λ is eigen value of a given matrix
▶ the larger µ1 is, the closer to singularity we are
▶ Small µ1 is preferred

▶ Volume of manipulability ellipsoid
▶ the smaller volume is, the closer to singularity we are
▶ µ2 =

√
λ1λ2 · · · = det (JJ⊤)

▶ Large µ2 is preferred



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 16 / 23

Redundant robots and singularities



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 17 / 23

Null-space of jacobian

▶ Null(A) = ker(A) = {x |Ax = 0}

▶ Find q̇ s.t. ẋ = 0
▶ q̇null ∈ ker(J)

▶ there are multiple solutions if we have more DoF



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 17 / 23

Null-space of jacobian

▶ Null(A) = ker(A) = {x |Ax = 0}
▶ Find q̇ s.t. ẋ = 0

▶ q̇null ∈ ker(J)

▶ there are multiple solutions if we have more DoF



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 17 / 23

Null-space of jacobian

▶ Null(A) = ker(A) = {x |Ax = 0}
▶ Find q̇ s.t. ẋ = 0

▶ q̇null ∈ ker(J)

▶ there are multiple solutions if we have more DoF



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 17 / 23

Null-space of jacobian

▶ Null(A) = ker(A) = {x |Ax = 0}
▶ Find q̇ s.t. ẋ = 0

▶ q̇null ∈ ker(J)
▶ there are multiple solutions if we have more DoF



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 18 / 23

Statics analysis

▶ Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

▶ Static equilibrium: no power is used to move the robot, i.e. no motion
▶ (power at the joints) = (power at the end-effector)
▶ τ⊤q̇ = F⊤ẋ

▶ τ joint torques
▶ q̇ joint velocities
▶ F end-effector force
▶ ẋ end-effector velocity

▶ ẋ = J(q)q̇
▶ τ⊤ = F⊤J(q)
▶ τ = J(q)⊤F



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 18 / 23

Statics analysis

▶ Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

▶ Static equilibrium: no power is used to move the robot, i.e. no motion

▶ (power at the joints) = (power at the end-effector)
▶ τ⊤q̇ = F⊤ẋ

▶ τ joint torques
▶ q̇ joint velocities
▶ F end-effector force
▶ ẋ end-effector velocity

▶ ẋ = J(q)q̇
▶ τ⊤ = F⊤J(q)
▶ τ = J(q)⊤F



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 18 / 23

Statics analysis

▶ Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

▶ Static equilibrium: no power is used to move the robot, i.e. no motion
▶ (power at the joints) = (power at the end-effector)
▶ τ⊤q̇ = F⊤ẋ

▶ τ joint torques
▶ q̇ joint velocities
▶ F end-effector force
▶ ẋ end-effector velocity

▶ ẋ = J(q)q̇
▶ τ⊤ = F⊤J(q)
▶ τ = J(q)⊤F



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 18 / 23

Statics analysis

▶ Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

▶ Static equilibrium: no power is used to move the robot, i.e. no motion
▶ (power at the joints) = (power at the end-effector)
▶ τ⊤q̇ = F⊤ẋ

▶ τ joint torques
▶ q̇ joint velocities
▶ F end-effector force
▶ ẋ end-effector velocity

▶ ẋ = J(q)q̇
▶ τ⊤ = F⊤J(q)

▶ τ = J(q)⊤F



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 18 / 23

Statics analysis

▶ Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

▶ Static equilibrium: no power is used to move the robot, i.e. no motion
▶ (power at the joints) = (power at the end-effector)
▶ τ⊤q̇ = F⊤ẋ

▶ τ joint torques
▶ q̇ joint velocities
▶ F end-effector force
▶ ẋ end-effector velocity

▶ ẋ = J(q)q̇
▶ τ⊤ = F⊤J(q)
▶ τ = J(q)⊤F



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 19 / 23

Statics - compensating external force

▶ Consider external force applied to the end-effector is −F .
▶ How to compute joint torques s.t. robot is static?

▶ τext = J(q)⊤F
▶ end-effector needs to generate force F to compensate external −F
▶ this equation assumes gravity does not act on a robot
▶ τ = τext + τg

▶ τg compensates gravity acting on a robot

▶ For Panda robot, you can directly command τext



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 19 / 23

Statics - compensating external force

▶ Consider external force applied to the end-effector is −F .
▶ How to compute joint torques s.t. robot is static?

▶ τext = J(q)⊤F
▶ end-effector needs to generate force F to compensate external −F

▶ this equation assumes gravity does not act on a robot
▶ τ = τext + τg

▶ τg compensates gravity acting on a robot

▶ For Panda robot, you can directly command τext



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 19 / 23

Statics - compensating external force

▶ Consider external force applied to the end-effector is −F .
▶ How to compute joint torques s.t. robot is static?

▶ τext = J(q)⊤F
▶ end-effector needs to generate force F to compensate external −F
▶ this equation assumes gravity does not act on a robot
▶ τ = τext + τg

▶ τg compensates gravity acting on a robot

▶ For Panda robot, you can directly command τext



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 19 / 23

Statics - compensating external force

▶ Consider external force applied to the end-effector is −F .
▶ How to compute joint torques s.t. robot is static?

▶ τext = J(q)⊤F
▶ end-effector needs to generate force F to compensate external −F
▶ this equation assumes gravity does not act on a robot
▶ τ = τext + τg

▶ τg compensates gravity acting on a robot

▶ For Panda robot, you can directly command τext



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 20 / 23

Force caused by given torques

▶ If J is invertible (when it is invertible?)
▶ F = J(q)−⊤τ

▶ Redundant robots
▶ even for fixed end-effector we can have internal motion
▶ static equilibrium assumption is not valid → dynamics needed

▶ Under-actuated robots
▶ fixed end-effector will immobilize the robot
▶ robot cannot actively generate forces in null-space of J⊤: ker(J⊤) =

{
F | J⊤F = 0

}
▶ however, robot can resist external force in the null-space without moving
▶ red arrow shows null-space

▶ Singularities (square J, but non-invertible)
▶ non-zero null-space



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 20 / 23

Force caused by given torques

▶ If J is invertible (when it is invertible?)
▶ F = J(q)−⊤τ

▶ Redundant robots
▶ even for fixed end-effector we can have internal motion
▶ static equilibrium assumption is not valid → dynamics needed

▶ Under-actuated robots
▶ fixed end-effector will immobilize the robot
▶ robot cannot actively generate forces in null-space of J⊤: ker(J⊤) =

{
F | J⊤F = 0

}
▶ however, robot can resist external force in the null-space without moving
▶ red arrow shows null-space

▶ Singularities (square J, but non-invertible)
▶ non-zero null-space



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 20 / 23

Force caused by given torques

▶ If J is invertible (when it is invertible?)
▶ F = J(q)−⊤τ

▶ Redundant robots
▶ even for fixed end-effector we can have internal motion
▶ static equilibrium assumption is not valid → dynamics needed

▶ Under-actuated robots
▶ fixed end-effector will immobilize the robot
▶ robot cannot actively generate forces in null-space of J⊤: ker(J⊤) =

{
F | J⊤F = 0

}
▶ however, robot can resist external force in the null-space without moving

▶ red arrow shows null-space

▶ Singularities (square J, but non-invertible)
▶ non-zero null-space



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 20 / 23

Force caused by given torques

▶ If J is invertible (when it is invertible?)
▶ F = J(q)−⊤τ

▶ Redundant robots
▶ even for fixed end-effector we can have internal motion
▶ static equilibrium assumption is not valid → dynamics needed

▶ Under-actuated robots
▶ fixed end-effector will immobilize the robot
▶ robot cannot actively generate forces in null-space of J⊤: ker(J⊤) =

{
F | J⊤F = 0

}
▶ however, robot can resist external force in the null-space without moving
▶ red arrow shows null-space

▶ Singularities (square J, but non-invertible)
▶ non-zero null-space



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 20 / 23

Force caused by given torques

▶ If J is invertible (when it is invertible?)
▶ F = J(q)−⊤τ

▶ Redundant robots
▶ even for fixed end-effector we can have internal motion
▶ static equilibrium assumption is not valid → dynamics needed

▶ Under-actuated robots
▶ fixed end-effector will immobilize the robot
▶ robot cannot actively generate forces in null-space of J⊤: ker(J⊤) =

{
F | J⊤F = 0

}
▶ however, robot can resist external force in the null-space without moving
▶ red arrow shows null-space

▶ Singularities (square J, but non-invertible)
▶ non-zero null-space



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 21 / 23

Force ellipsoid
▶ How easy is to generate force in a given direction.
▶ Eigen analysis of (JJ⊤)−1

▶ Blue - manipulability ellipsoid (i.e. JJ⊤)
▶ Green - force ellipsoid (i.e. (JJ⊤)−1)

▶ Easy motion in a direction → difficult to compensate force in that direction
▶ Close to singularity:

▶ area of manipulability ellipsoid → 0
▶ area of force ellipsoid → ∞



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 22 / 23

Summary

▶ Differential kinematics
▶ Jacobian and its properties
▶ How to compute Jacobian
▶ Manipulability ellipsoids
▶ How to measure distance to singularity

▶ Statics
▶ Static equilibrium relation of joint torques and task-space forces
▶ Force ellipsoids



Robotics: Differential Kinematics and Statics
Vladiḿır Petŕık 23 / 23

Laboratory

▶ Implementation of jacobian computation for planar manipulator
▶ Finite difference method
▶ Analytical method

▶ Generováńı of movement in null-space


