
Robotics: Inverse Kinematics

Vladiḿır Petŕık

vladimir.petrik@cvut.cz

16.10.2023



Robotics: Inverse Kinematics
Vladiḿır Petŕık 2 / 21

Kinematics tasks

▶ Forward kinematics (FK)
▶ how to compute end-effector pose from the configuration
▶ x = ffk(q)
▶ x is expressed in task-space, i.e. SE(2) , SE(3) , or R2, R3 for position only
▶ q ∈ RN is configuration (joint space)

▶ Differential kinematics
▶ relates end-effector velocity to joint velocities
▶ ẋ = J(q)q̇

▶ Inverse kinematics (IK)
▶ how to compute robot configuration(s) for given end-effector configuration
▶ q ∈ fik(x)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 2 / 21

Kinematics tasks

▶ Forward kinematics (FK)
▶ how to compute end-effector pose from the configuration
▶ x = ffk(q)
▶ x is expressed in task-space, i.e. SE(2) , SE(3) , or R2, R3 for position only
▶ q ∈ RN is configuration (joint space)

▶ Differential kinematics
▶ relates end-effector velocity to joint velocities
▶ ẋ = J(q)q̇

▶ Inverse kinematics (IK)
▶ how to compute robot configuration(s) for given end-effector configuration
▶ q ∈ fik(x)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 2 / 21

Kinematics tasks

▶ Forward kinematics (FK)
▶ how to compute end-effector pose from the configuration
▶ x = ffk(q)
▶ x is expressed in task-space, i.e. SE(2) , SE(3) , or R2, R3 for position only
▶ q ∈ RN is configuration (joint space)

▶ Differential kinematics
▶ relates end-effector velocity to joint velocities
▶ ẋ = J(q)q̇

▶ Inverse kinematics (IK)
▶ how to compute robot configuration(s) for given end-effector configuration
▶ q ∈ fik(x)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure
▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 3 / 21

Example: Analytical IK for RR structure

▶ Task space: translation of end-effector, x ∈ R2

▶ Configuration (joint) space: q ∈ R2

▶ Algorithm:
▶ Compute position of all joints and end-effector
▶ No solution, 1 solution, 2 solutions, or ∞ solutions
▶ For each solution, compute joint configurations θi = atan2(y, x) + 2kπ, k ∈ Z(

x y
)⊤

= ti,i+1, i.e. translation part of Ti,i+1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R
▶ taylor expansion of g(θ) at θ0:

g(θ) = g(θ0) + ∂g
∂θ (θ

0)(θ − θ0)+ higher-order terms
▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R
▶ taylor expansion of g(θ) at θ0:

g(θ) = g(θ0) + ∂g
∂θ (θ

0)(θ − θ0)+ higher-order terms
▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R

▶ taylor expansion of g(θ) at θ0:
g(θ) = g(θ0) + ∂g

∂θ (θ
0)(θ − θ0)+ higher-order terms

▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R
▶ taylor expansion of g(θ) at θ0:

g(θ) = g(θ0) + ∂g
∂θ (θ

0)(θ − θ0)+ higher-order terms

▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R
▶ taylor expansion of g(θ) at θ0:

g(θ) = g(θ0) + ∂g
∂θ (θ

0)(θ − θ0)+ higher-order terms
▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 4 / 21

Numerical optimization

▶ Analytical solution is often unavailable
▶ solution does not exist and we seek for the closest approximate
▶ infinite solutions exist and we seek for configuration w.r.t. given criteria

▶ We can use generic numerical algorithm, that iteratively reduce error
▶ Newton–Raphson method

▶ solve g(θ) = 0, g : R → R
▶ taylor expansion of g(θ) at θ0:

g(θ) = g(θ0) + ∂g
∂θ (θ

0)(θ − θ0)+ higher-order terms
▶ set g(θ) = 0, ignore higher-order terms, and solve for θ:

θ ≈ θ0 −
(

∂g
∂θ (θ

0)
)−1

g(θ0)

▶ as we ignore higher-order terms, we need to iterate:

θk+1 = θk −
(

∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 5 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 6 / 21

1D Newton–Raphson method example

▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3
▶ Quality of the solution depends on the initial guess



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 7 / 21

1D Newton–Raphson method example
▶ g(θ) = sin(θ), find θ∗ s.t. g(θ∗) = 0, θ0 = 1.3, α = 0.5

▶ θk+1 = θk − α
(
∂g
∂θ (θ

k)
)−1

g(θk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1
▶ if g(θk+1) < g(θk): break
▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1
▶ if g(θk+1) < g(θk): break
▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1

▶ if g(θk+1) < g(θk): break
▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1
▶ if g(θk+1) < g(θk): break

▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1
▶ if g(θk+1) < g(θk): break
▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 8 / 21

How to find α?

▶ Line-search algorithm

▶ Find α s.t. g(θk+1) < g(θk)

▶ Algorithm:
▶ α0 = 1
▶ if g(θk+1) < g(θk): break
▶ αi+1 = ταi, 0 < τ < 1, e.g. τ = 0.5
▶ repeat

▶ More sophisticated line-search algorithms exist



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0) = ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively :
qk+1 = qk + J(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0) = ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively :
qk+1 = qk + J(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0)

= ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively :
qk+1 = qk + J(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0) = ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively :
qk+1 = qk + J(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0) = ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively :
qk+1 = qk + J(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 9 / 21

Numerical solution for RR IK

▶ Newton–Raphson method for n-dimensional case

θk+1 = θk − α
(

∂g
∂θ (θ

k)
)−1

g(θk) solves g(θ) = 0

▶ For manipulator kinematics:
g(q) = xd − ffk(q), xd ∈ R2

▶ Following NR method (for g(q) = 0):

▶ xd = ffk(qd) ≈ ffk(q
0) + ∂ffk

∂q (q0)(qd − q0) = ffk(q
0) + J(q0)(qd − q0)

qd ≈ q0 + J(q0)−1(xd − ffk(q
0))

▶ Iteratively with line-search:
qk+1 = qk + αJ(qk)−1(xd − ffk(q

k))

▶ Intuition via differential kinematics:
▶ what should be velocity in joint space s.t. we achieve given velocity in task-space
▶ q̇ = J−1ẋ



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 10 / 21

Numerical solution for RR IK #1



Robotics: Inverse Kinematics
Vladiḿır Petŕık 11 / 21

Numerical solution for RR IK #2



Robotics: Inverse Kinematics
Vladiḿır Petŕık 11 / 21

Numerical solution for RR IK #2



Robotics: Inverse Kinematics
Vladiḿır Petŕık 11 / 21

Numerical solution for RR IK #2



Robotics: Inverse Kinematics
Vladiḿır Petŕık 11 / 21

Numerical solution for RR IK #2



Robotics: Inverse Kinematics
Vladiḿır Petŕık 11 / 21

Numerical solution for RR IK #2



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 12 / 21

Numerical solution for RR IK #3



Robotics: Inverse Kinematics
Vladiḿır Petŕık 13 / 21

Numerical solution - takout message

▶ Numerical solution is easy to implement for general manipulators
▶ Initial guess is important

▶ if we are close to the solution, FK is almost linear we will converge to the closest
solution

▶ if we are too far away we have no control about which solution is selected
▶ tuning step-size might help

▶ We need to define stopping criteria
▶ e.g.

∥∥xd − ffk(q
k)
∥∥ < ε



Robotics: Inverse Kinematics
Vladiḿır Petŕık 14 / 21

What if J is not invertible?

▶ Redundant robots, Underactuated robots, Singularity

▶ Moore–Penrose pseudoinverse J†

▶ qk+1 = qk + αJ†(qk)(xd − ffk(q
k))

▶ Redundant robots
▶ infinite solutions to achieve same task space velocity
▶ pseudoinverse will additionally minimize ∥q∥

▶ Underactuated robots or singularity
▶ no exact solution exist for task space velocity
▶ pseudoinverse will minimize the error in task-space



Robotics: Inverse Kinematics
Vladiḿır Petŕık 14 / 21

What if J is not invertible?

▶ Redundant robots, Underactuated robots, Singularity

▶ Moore–Penrose pseudoinverse J†

▶ qk+1 = qk + αJ†(qk)(xd − ffk(q
k))

▶ Redundant robots
▶ infinite solutions to achieve same task space velocity
▶ pseudoinverse will additionally minimize ∥q∥

▶ Underactuated robots or singularity
▶ no exact solution exist for task space velocity
▶ pseudoinverse will minimize the error in task-space



Robotics: Inverse Kinematics
Vladiḿır Petŕık 14 / 21

What if J is not invertible?

▶ Redundant robots, Underactuated robots, Singularity

▶ Moore–Penrose pseudoinverse J†

▶ qk+1 = qk + αJ†(qk)(xd − ffk(q
k))

▶ Redundant robots
▶ infinite solutions to achieve same task space velocity
▶ pseudoinverse will additionally minimize ∥q∥

▶ Underactuated robots or singularity
▶ no exact solution exist for task space velocity
▶ pseudoinverse will minimize the error in task-space



Robotics: Inverse Kinematics
Vladiḿır Petŕık 14 / 21

What if J is not invertible?

▶ Redundant robots, Underactuated robots, Singularity

▶ Moore–Penrose pseudoinverse J†

▶ qk+1 = qk + αJ†(qk)(xd − ffk(q
k))

▶ Redundant robots
▶ infinite solutions to achieve same task space velocity
▶ pseudoinverse will additionally minimize ∥q∥

▶ Underactuated robots or singularity
▶ no exact solution exist for task space velocity
▶ pseudoinverse will minimize the error in task-space



Robotics: Inverse Kinematics
Vladiḿır Petŕık 15 / 21

IK solution for redundant robot



Robotics: Inverse Kinematics
Vladiḿır Petŕık 16 / 21

IK in SE(2) for RRR

▶ Given desired pose TD
RG ∈ SE(2)

▶ R - reference frame
▶ G - gripper frame

▶ Analytical solution
▶ decouple problem into rotation (last joint) and position (other joints)

▶ tRC = TD
RG

(
−l3 0 1

)⊤
▶ tRB compute as for RR for translation task-space
▶ use atan2 to compute joint configurations

▶ Numerical solution
▶ error in reference frame:

e(q) =
(
xD
RG − xRG(q) yDRG − yRG(q) ϕD

RG − ϕRG(q)
)⊤

▶ NR step:
qk+1 = qk + αJ†(qk)e(qk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 16 / 21

IK in SE(2) for RRR

▶ Given desired pose TD
RG ∈ SE(2)

▶ R - reference frame
▶ G - gripper frame

▶ Analytical solution
▶ decouple problem into rotation (last joint) and position (other joints)

▶ tRC = TD
RG

(
−l3 0 1

)⊤
▶ tRB compute as for RR for translation task-space
▶ use atan2 to compute joint configurations

▶ Numerical solution
▶ error in reference frame:

e(q) =
(
xD
RG − xRG(q) yDRG − yRG(q) ϕD

RG − ϕRG(q)
)⊤

▶ NR step:
qk+1 = qk + αJ†(qk)e(qk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 16 / 21

IK in SE(2) for RRR

▶ Given desired pose TD
RG ∈ SE(2)

▶ R - reference frame
▶ G - gripper frame

▶ Analytical solution
▶ decouple problem into rotation (last joint) and position (other joints)

▶ tRC = TD
RG

(
−l3 0 1

)⊤
▶ tRB compute as for RR for translation task-space
▶ use atan2 to compute joint configurations

▶ Numerical solution
▶ error in reference frame:

e(q) =
(
xD
RG − xRG(q) yDRG − yRG(q) ϕD

RG − ϕRG(q)
)⊤

▶ NR step:
qk+1 = qk + αJ†(qk)e(qk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 16 / 21

IK in SE(2) for RRR

▶ Given desired pose TD
RG ∈ SE(2)

▶ R - reference frame
▶ G - gripper frame

▶ Analytical solution
▶ decouple problem into rotation (last joint) and position (other joints)

▶ tRC = TD
RG

(
−l3 0 1

)⊤
▶ tRB compute as for RR for translation task-space
▶ use atan2 to compute joint configurations

▶ Numerical solution
▶ error in reference frame:

e(q) =
(
xD
RG − xRG(q) yDRG − yRG(q) ϕD

RG − ϕRG(q)
)⊤

▶ NR step:
qk+1 = qk + αJ†(qk)e(qk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 16 / 21

IK in SE(2) for RRR

▶ Given desired pose TD
RG ∈ SE(2)

▶ R - reference frame
▶ G - gripper frame

▶ Analytical solution
▶ decouple problem into rotation (last joint) and position (other joints)

▶ tRC = TD
RG

(
−l3 0 1

)⊤
▶ tRB compute as for RR for translation task-space
▶ use atan2 to compute joint configurations

▶ Numerical solution
▶ error in reference frame:

e(q) =
(
xD
RG − xRG(q) yDRG − yRG(q) ϕD

RG − ϕRG(q)
)⊤

▶ NR step:
qk+1 = qk + αJ†(qk)e(qk)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 17 / 21

Numerical solution in SE(2)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 17 / 21

Numerical solution in SE(2)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 17 / 21

Numerical solution in SE(2)



Robotics: Inverse Kinematics
Vladiḿır Petŕık 18 / 21

IK in SE(3)

▶ Numerical IK algorithm is almost the same
▶ error needs to be computed via transformations
▶ as in planar case, error needs to be represented in reference frame

▶ Analytical solution might not exists for general 6 DoF manipulator
▶ For 6 DoF spatial robot with revolute joints

▶ solution can be decoupled if last three joint axes intersect each other
▶ use last three joints to orient gripper
▶ use the first three joints to position the flange



Robotics: Inverse Kinematics
Vladiḿır Petŕık 18 / 21

IK in SE(3)

▶ Numerical IK algorithm is almost the same
▶ error needs to be computed via transformations
▶ as in planar case, error needs to be represented in reference frame

▶ Analytical solution might not exists for general 6 DoF manipulator

▶ For 6 DoF spatial robot with revolute joints
▶ solution can be decoupled if last three joint axes intersect each other
▶ use last three joints to orient gripper
▶ use the first three joints to position the flange



Robotics: Inverse Kinematics
Vladiḿır Petŕık 18 / 21

IK in SE(3)

▶ Numerical IK algorithm is almost the same
▶ error needs to be computed via transformations
▶ as in planar case, error needs to be represented in reference frame

▶ Analytical solution might not exists for general 6 DoF manipulator
▶ For 6 DoF spatial robot with revolute joints

▶ solution can be decoupled if last three joint axes intersect each other
▶ use last three joints to orient gripper
▶ use the first three joints to position the flange



Robotics: Inverse Kinematics
Vladiḿır Petŕık 19 / 21

Example of importance of multiple solutions



Robotics: Inverse Kinematics
Vladiḿır Petŕık 20 / 21

Summary

▶ Inverse kinematics
▶ analytical solution via geometrical analysis

▶ leads to computation of intersections of geometrical primitives

▶ numerical solution, Newton–Raphson method
▶ Jacobian
▶ pseudoinverse

▶ Number of solutions of inverse kinematics
▶ no solution
▶ multiple solutions
▶ periodical solutions
▶ infinite number of solutions



Robotics: Inverse Kinematics
Vladiḿır Petŕık 21 / 21

Laboratory

▶ Numerical IK in SE(2)

▶ Analytical IK in SE(2) for RRR manipulator

▶ Analytical IK in SE(2) for PRR manipulator [optional]


