CTU

CZECH TECHNICAL UNIVERSITY in PRAGUE

Robotics: Inverse Kinematics

Vladimír Petrík

vladimir.petrik@cvut.cz
16.10.2023

Kinematics tasks

Forward kinematics (FK)

- how to compute end-effector pose from the configuration
- $\boldsymbol{x}=f_{\mathrm{fk}}(\boldsymbol{q})$
- \boldsymbol{x} is expressed in task-space, i.e. $S E(2), S E(3)$, or $\mathbb{R}^{2}, \mathbb{R}^{3}$ for position only
- $\boldsymbol{q} \in \mathbb{R}^{N}$ is configuration (joint space)

Differential kinematics

- relates end-effector velocity to joint velocities
- $\dot{\boldsymbol{x}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$

Inverse kinematics (IK)

- how to compute robot configuration(s) for given end-effector configuration
- $\boldsymbol{q} \in f_{\mathrm{ik}}(\boldsymbol{x})$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$

Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$

Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$
- Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$

Example: Analytical IK for RR structure

- Task space: translation of end-effector, $\boldsymbol{x} \in \mathbb{R}^{2}$

Configuration (joint) space: $\boldsymbol{q} \in \mathbb{R}^{2}$
Algorithm:

- Compute position of all joints and end-effector
- No solution, 1 solution, 2 solutions, or ∞ solutions
- For each solution, compute joint configurations $\theta_{i}=\operatorname{atan} 2(y, x)+2 k \pi, k \in \mathbb{Z}$ $\left(\begin{array}{ll}x & y\end{array}\right)^{\top}=\boldsymbol{t}_{i, i+1}$, i.e. translation part of $T_{i, i+1}$

Numerical optimization

- Analytical solution is often unavailable
- solution does not exist and we seek for the closest approximate
- infinite solutions exist and we seek for configuration w.r.t. given criteria
- We can use generic numerical algorithm, that iteratively reduce error Newton-Raphson method
- solve $g(\theta)=0, g: \mathbb{R} \rightarrow \mathbb{R}$
- taylor expansion of $g(\theta)$ at θ^{0} :
$g(\theta)=g\left(\theta^{0}\right)+\frac{\partial g}{\partial \theta}\left(\theta^{0}\right)\left(\theta-\theta^{0}\right)+$ higher-order terms
- set $g(\theta)=0$, ignore higher-order terms, and solve for θ :
$\theta \approx \theta^{0}-\left(\frac{\partial g}{\partial \theta}\left(\theta^{0}\right)\right)^{-1} g\left(\theta^{0}\right)$
- as we ignore higher-order terms, we need to iterate:

$$
\theta^{k+1}=\theta^{k}-\left(\frac{\partial g}{\partial \theta}\left(\theta^{k}\right)\right)^{-1} g\left(\theta^{k}\right)
$$

1D Newton-Raphson method example

- $g(\theta)=\sin (\theta)$, find θ^{*} s.t. $g\left(\theta^{*}\right)=0, \theta^{0}=1.1$

1D Newton-Raphson method example
$g(\theta)=\sin (\theta)$, find θ^{*} s.t. $g\left(\theta^{*}\right)=0, \theta^{0}=1.3$
$>$ Quality of the solution depends on the initial guess

1D Newton-Raphson method example

$g(\theta)=\sin (\theta)$, find θ^{*} s.t. $g\left(\theta^{*}\right)=0, \theta^{0}=1.3, \alpha=0.5$

- $\theta^{k+1}=\theta^{k}-\alpha\left(\frac{\partial g}{\partial \theta}\left(\theta^{k}\right)\right)^{-1} g\left(\theta^{k}\right)$

How to find α ?

Line-search algorithm

- Find α s.t. $g\left(\theta^{k+1}\right)<g\left(\theta^{k}\right)$
- Algorithm:
- $\alpha^{0}=1$
- if $g\left(\theta^{k+1}\right)<g\left(\theta^{k}\right)$: break
- $\alpha^{i+1}=\tau \alpha^{i}, 0<\tau<1$, e.g. $\tau=0.5$
- repeat

More sophisticated line-search algorithms exist

Numerical solution for RR IK

- Newton-Raphson method for n-dimensional case
$\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha\left(\frac{\partial g}{\partial \boldsymbol{\theta}}\left(\boldsymbol{\theta}^{k}\right)\right)^{-1} g\left(\boldsymbol{\theta}^{k}\right)$ solves $g(\boldsymbol{\theta})=\mathbf{0}$
- For manipulator kinematics:
$g(\boldsymbol{q})=\boldsymbol{x}_{d}-f_{\mathrm{fk}}(\boldsymbol{q}), \boldsymbol{x}_{d} \in \mathbb{R}^{2}$
- Following NR method (for $g(\boldsymbol{q})=0$):
- $\boldsymbol{x}_{d}=f_{\mathrm{fk}}\left(\boldsymbol{q}_{d}\right) \approx f_{\mathrm{fk}}\left(\boldsymbol{q}^{0}\right)+\frac{\partial f_{\mathrm{fk}}}{\partial \boldsymbol{q}}\left(\boldsymbol{q}^{0}\right)\left(\boldsymbol{q}_{d}-\boldsymbol{q}^{0}\right)=f_{\mathrm{fk}}\left(\boldsymbol{q}^{0}\right)+J\left(\boldsymbol{q}^{0}\right)\left(\boldsymbol{q}_{d}-\boldsymbol{q}^{0}\right)$ $\boldsymbol{q}_{d} \approx \boldsymbol{q}^{0}+J\left(\boldsymbol{q}^{0}\right)^{-1}\left(\boldsymbol{x}_{d}-f_{\mathrm{fk}}\left(\boldsymbol{q}^{0}\right)\right)$
- Iteratively with line-search:
$\boldsymbol{q}^{k+1}=\boldsymbol{q}^{k}+\alpha J\left(\boldsymbol{q}^{k}\right)^{-1}\left(\boldsymbol{x}_{d}-f_{\mathrm{fk}}\left(\boldsymbol{q}^{k}\right)\right)$
- Intuition via differential kinematics:
- what should be velocity in joint space s.t. we achieve given velocity in task-space
- $\dot{\boldsymbol{q}}=J^{-1} \dot{\boldsymbol{x}}$

Numerical solution for RR IK \#1

Numerical solution for RR IK \#2

Numerical solution for RR IK \#3

Numerical solution - takout message

Numerical solution is easy to implement for general manipulators

- Initial guess is important
- if we are close to the solution, FK is almost linear we will converge to the closest solution
- if we are too far away we have no control about which solution is selected
- tuning step-size might help

We need to define stopping criteria

- e.g. $\left\|\boldsymbol{x}_{d}-f_{\mathrm{fk}}\left(\boldsymbol{q}^{k}\right)\right\|<\varepsilon$

What if J is not invertible?

Redundant robots, Underactuated robots, Singularity

- Moore-Penrose pseudoinverse J^{\dagger}
- $\boldsymbol{q}^{k+1}=\boldsymbol{q}^{k}+\alpha J^{\dagger}\left(\boldsymbol{q}^{k}\right)\left(\boldsymbol{x}_{d}-f_{\mathrm{fk}}\left(\boldsymbol{q}^{k}\right)\right)$
- Redundant robots
- infinite solutions to achieve same task space velocity
- pseudoinverse will additionally minimize $\|\boldsymbol{q}\|$

Underactuated robots or singularity

- no exact solution exist for task space velocity
- pseudoinverse will minimize the error in task-space

IK solution for redundant robot

Configuration space

Vladimír Petrík

IK in $S E(2)$ for $\mathbf{R R R}$

Given desired pose $T_{\mathrm{RG}}^{D} \in S E(2)$

- R - reference frame
- G - gripper frame

Analytical solution

- decouple problem into rotation (last joint) and position (other joints)
- $\boldsymbol{t}_{R C}=T_{R G}^{D}\left(\begin{array}{lll}-l_{3} & 0 & 1\end{array}\right)^{\top}$
- $\boldsymbol{t}_{R B}$ compute as for RR for translation task-space
- use atan2 to compute joint configurations

Numerical solution

- error in reference frame:

$$
e(\boldsymbol{q})=\left(x_{R G}^{D}-x_{R G}(\boldsymbol{q}) \quad y_{R G}^{D}-y_{R G}(\boldsymbol{q}) \quad \phi_{R G}^{D}-\phi_{R G}(\boldsymbol{q})\right)^{\top}
$$

- NR step:

$$
\boldsymbol{q}^{k+1}=\boldsymbol{q}^{k}+\alpha J^{\dagger}\left(\boldsymbol{q}^{k}\right) \boldsymbol{e}\left(\boldsymbol{q}^{k}\right)
$$

Numerical solution in $S E(2)$

$r A$

Robotics: Inverse Kinematics
Vladimír Petrík
17 / 21

- Numerical IK algorithm is almost the same
- error needs to be computed via transformations
- as in planar case, error needs to be represented in reference frame
- Analytical solution might not exists for general 6 DoF manipulator
- For 6 DoF spatial robot with revolute joints
- solution can be decoupled if last three joint axes intersect each other
- use last three joints to orient gripper
- use the first three joints to position the flange

Example of importance of multiple solutions

Vladimír Petrík

Summary

Inverse kinematics

- analytical solution via geometrical analysis
- leads to computation of intersections of geometrical primitives
- numerical solution, Newton-Raphson method
- Jacobian
- pseudoinverse

Number of solutions of inverse kinematics

- no solution
- multiple solutions
- periodical solutions
- infinite number of solutions

Laboratory

- Numerical IK in $S E(2)$
- Analytical IK in $S E(2)$ for RRR manipulator
- Analytical IK in $S E(2)$ for PRR manipulator [optional]

Robotics: Inverse Kinematics
Vladimír Petrík

