Robotics: Introduction to perception

Vladimír Petrík

vladimir.petrik@cvut.cz
23.10.2023

What is image?

- Camera connected to computer produces images
- Image is array of numbers ${ }^{1}$

[^0]
How is the image formed?

- Perspective camera
- pinhole camera model ${ }^{2}$
- projects spatial point \boldsymbol{x}_{c} into image point $\boldsymbol{u}=\left(\begin{array}{ll}u & v\end{array}\right)^{\top}$ by intersecting
- image plane and
- the line connecting \boldsymbol{x}_{c} with the projection center
- all points on a ray project to the same pixel

[^1]
Projection of pinhole camera

- $\boldsymbol{u}_{H}=K \boldsymbol{x}_{c}$
- \boldsymbol{u}_{H} is pixel in homogeneous coordinates
- if $\boldsymbol{u}_{H}=\left(\begin{array}{lll}u_{H} & v_{H} & w_{H}\end{array}\right)^{\top}$, then pixel coordinates are $\left(\begin{array}{ll}u_{H} / w_{H} & v_{H} / w_{H}\end{array}\right)^{\top}$
- alternatively, we can represent it as: $\lambda(u, v, 1)^{\top}=K \boldsymbol{x}_{\boldsymbol{c}}$
- K is camera matrix
- $K=\left(\begin{array}{ccc}f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1\end{array}\right)$
- what does λ represent?
- λ is non-zero real number
- if you know λ value, you can compute Cartesian coordinate $\boldsymbol{x}=\lambda K^{-1} \boldsymbol{u}$
- otherwise, only ray is computable
how to find K from points?

What we can study on images?

- Segmentation masks (where are the objects of interest)
- Objects classification (labeling)

Segmentation masks - color thresholding

- Thresholding
- RGB pixel values for coordinates $\boldsymbol{u}: I_{\mathrm{RGB}}(\boldsymbol{u})$
- $M(\boldsymbol{u})=1$, if $I_{\mathrm{RGB}}(\boldsymbol{u})=\left(\begin{array}{lll}0 & 255 & 0\end{array}\right)^{\top}$?
- $M(\boldsymbol{u})=1$, if $\boldsymbol{\tau}_{l}<I_{\mathrm{RGB}}(\boldsymbol{u})<\boldsymbol{\tau}_{u}$, for all channels
- $M(\boldsymbol{u})=1$, if $\boldsymbol{\varphi}_{l}<I_{\mathrm{HSV}}(\boldsymbol{u})<\boldsymbol{\varphi}_{u}$, for all channels
- Post-processing
- compute connected components
- remove small or deformed segments
- assign label based on thresholds

Segmentation masks for known 3D objects

- Neural Network (e.g. Mask R-CNN)
- Training inputs:
- dataset of images, masks and labels, or
- dataset of known 3D objects (meshes)
- quality depends on the training data (augumentations)
- Inference:
- Input: image
- Output: segmentation mask, bounding box, label, and confidence

Mask R-CNN results

Vladimír Petrík

Mask R-CNN results

Segmentation masks without re-training

- Segment Anything Model (SAM)
- segment any object, in any image, with a single click
- dataset of 10M images, 1B masks

Universal segmentation model

SAM results

SAM results

Vladimír Petrík

Segmentation

- Segmentation finds objects in image
- segmentation mask
- bounding box
- label
- confidence score
- Information only in image space
- How to use it in robot space?

External camera

- Assume camera mounted rigidly to the reference frame
- if we know K and $T_{R C}$, how to project points \boldsymbol{x}_{R} to image?
- Unknown K and $T_{R C}$ and planar problem
- e.g. cubes with the same high on table desk
- what is the position of cube on 2D table w.r.t. 2D image/pixels coordinates?
- analyzed by homography

Homography

- Homography matrix H is 3×3 matrix that maps points from one plane to another
- image plane to table desk
- one image plane to another image plane (different view)
- $s\left(\begin{array}{lll}x & y & 1\end{array}\right)^{\top}=H\left(\begin{array}{lll}u & v & 1\end{array}\right)^{\top}$
- x, y are coordinates in the first plane
- u, v are coordinates in the second plane
- 9 elements but only 8 DoF, usually added constraint $h_{33}=1$
- How to find H ?
- H, _ = cv2.findHomography(U, X)
- U, X are $N \times 2$ correspondence points
- e.g. measure manually
- position of cube center w.r.t. table corner
- position of cube center in image

Homography example

Non-planar pose estimation

- Homography maps only plane to plane
- More general object pose estimation in camera frame
- get depth by mapping from area in pixels to depth for fixed size objects
- get depth by additional scene information, e.g. known size/model of the objects
- RGBD camera
- additional markers

Using prior knowledge about size

- We know radius is fixed
- From detected pixels $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}$, we can compute rays $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$: $\frac{1}{\lambda_{i}} \boldsymbol{x}_{i}=K^{-1} \boldsymbol{u}_{i}$
- Angle between vectors: $\cos \alpha=\frac{\frac{1}{\lambda_{1} \lambda_{2}}}{\frac{1}{\lambda_{1} \lambda_{2}}} \frac{\boldsymbol{x}_{1} \cdot \boldsymbol{x}_{2}}{\left\|\boldsymbol{x}_{1}\right\|\left\|\boldsymbol{x}_{2}\right\|}$
- Depth: $z=\frac{r}{\sin (\alpha / 2)}$

Using depth sensor

- RGBD sensors
- RGB image $(H \times W \times 3)$
- Depth map $(H \times W \times 1)$, distance in meters for each pixel
- Structured point cloud $(H \times W \times 3)$, $\left(\begin{array}{lll}x_{c} & y_{c} & z_{c}\end{array}\right)$ for each pixel

How depth sensor works

- Laser projects pattern and camera recognizes it
- Depth information is computed using triangulation

2D depth sensors

- Based on the structured light
- Projects 2D infra red patterns
- One projector and two cameras (RGB + IR)

Issues with depth sensors

- Depth reconstruction is not perfect (black areas in the image ${ }^{3}$)
- In python represented by NaN
- Not every pixel in RGB has reconstructed depth value
- RGB and Depth data are not aligned (you need to calibrate them)

[^2]
Additional markers

- Can we compute the pose of patterns ${ }^{4}$?
- the size and structure needs to be known
- subpixel accuracy
- it has to be completely visible
- Can we compute the pose of ArUco markers?
- less accurate than regular patterns
- provides marker id and the pose
- it has to be completely visible

[^3]Markers pose example

ChArUco board for calibration

- Combines accuracy of pattern with detections of ArUco
- Partial visibility detections

Chessboard

ChArUco

Charuco definition

Camera matrix estimation with boards

- We can estimate camera matrix from correspondences in image space and spatial space
- collect images of the board from different views
- detect boards
- compute correspondences between image points and board frame points
- _, K, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, img_shape)
- In addition we get
- distortion coefficients that compensates defects of objective

```
Knew, roi = cv.getOptimalNewCameraMatrix(K, dist_coeffs,
        img_shape, 1, img_shape)
    img_undistorted = cv.undistort(img, K, dist_coeffs, None, Knew)
```

- $S E(3)$ poses of boards in camera frame

Pose estimation from RGB(D)

- Pose estimation methods
- use prior knowledge about the task, e.g. fixed height objects on a plane
- use prior knowledge about the objects (size)
- use depth sensor
- use ArUco markers
- Where is robot?
- homography estimates poses of objects w.r.t. plane frame
- other methods estimate poses in camera frame
- we need to estimate/calibrate T_{RC}

HandEye calibration

- Camera can be mounted w.r.t.
- robot base frame (eye-to-hand calibration)
- gripper frame (eye-in-hand calibration)
- Solve $A^{i} X=Y B^{i}$
- measurements: $A^{i}, B^{i} \in S E(3)$
- estimated parameters: $X, Y \in S E(3)$
- X, Y = calibrateRobotWorldHandEye(A, B)
- Eye-to-hand calibration
- $A^{i}=T_{\mathrm{RG}}^{i}$
- $B^{i}=T_{\mathrm{CT}}^{i}$
- $X=T_{\mathrm{GT}}$
- $Y=T_{\mathrm{RC}}$
- Eye-in-hand calibration
- $A^{i}=T_{\mathrm{CT}}^{i}$
- $B^{i}=T_{\mathrm{GR}}^{i}$
- $X=T_{\mathrm{TR}}$
- $Y=T_{\mathrm{CG}}$

Summary

- Image representation
- Projection to/from image
- Segmentation in image space
- Homography
- Pose estimation from image
- Camera calibration

Laboratory

- No new homework this week
- Homography estimation on toy example in Python/OpenCV
- HandEye calibration on toy example in Python/OpenCV

[^0]: ${ }^{1}$ Images are from: https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

[^1]: ${ }^{2}$ docs.opencv. org

[^2]: ${ }^{3}$ https://commons.wikimedia.org, User:Kolossos

[^3]: ${ }^{4}$ docs.opencv.org

