
Robotics: Introduction to perception

Vladiḿır Petŕık

vladimir.petrik@cvut.cz

23.10.2023



Robotics: Introduction to perception
Vladiḿır Petŕık 2 / 28

What is image?

▶ Camera connected to computer produces images

▶ Image is array of numbers1

1Images are from: https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html

https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html


Robotics: Introduction to perception
Vladiḿır Petŕık 3 / 28

How is the image formed?

▶ Perspective camera
▶ pinhole camera model2

▶ projects spatial point xc into image point u =
(
u v

)⊤
by intersecting

▶ image plane and
▶ the line connecting xc with the projection center

▶ all points on a ray project to the same pixel

xc

zc

x1

u1 u2

x2

2docs.opencv.org

docs.opencv.org


Robotics: Introduction to perception
Vladiḿır Petŕık 4 / 28

Projection of pinhole camera

▶ uH = Kxc

▶ uH is pixel in homogeneous coordinates
▶ if uH =

(
uH vH wH

)⊤
, then pixel coordinates are

(
uH/wH vH/wH

)⊤
▶ alternatively, we can represent it as: λ

(
u, v, 1

)⊤
= Kxc

▶ K is camera matrix

▶ K =

fx 0 cx
0 fy cy
0 0 1


▶ what does λ represent?

▶ λ is non-zero real number
▶ if you know λ value, you can compute Cartesian coordinate x = λK−1u
▶ otherwise, only ray is computable

▶ how to find K from points?



Robotics: Introduction to perception
Vladiḿır Petŕık 5 / 28

What we can study on images?

▶ Segmentation masks (where are the objects of interest)

▶ Objects classification (labeling)



Robotics: Introduction to perception
Vladiḿır Petŕık 6 / 28

Segmentation masks - color thresholding

▶ Thresholding
▶ RGB pixel values for coordinates u: IRGB(u)

▶ M(u) = 1, if IRGB(u) =
(
0 255 0

)⊤
?

▶ M(u) = 1, if τl < IRGB(u) < τu, for all channels
▶ M(u) = 1, if φl < IHSV(u) < φu, for all channels

▶ Post-processing
▶ compute connected components
▶ remove small or deformed segments
▶ assign label based on thresholds



Robotics: Introduction to perception
Vladiḿır Petŕık 7 / 28

Segmentation masks for known 3D objects

▶ Neural Network (e.g. Mask R-CNN)
▶ Training inputs:

▶ dataset of images, masks and labels, or
▶ dataset of known 3D objects (meshes)
▶ quality depends on the training data (augumentations)

▶ Inference:
▶ Input: image
▶ Output: segmentation mask, bounding box, label, and confidence



Robotics: Introduction to perception
Vladiḿır Petŕık 8 / 28

Mask R-CNN results



Robotics: Introduction to perception
Vladiḿır Petŕık 8 / 28

Mask R-CNN results



Robotics: Introduction to perception
Vladiḿır Petŕık 9 / 28

Segmentation masks without re-training
▶ Segment Anything Model (SAM)

▶ segment any object, in any image, with a single click
▶ dataset of 10M images, 1B masks



Robotics: Introduction to perception
Vladiḿır Petŕık 10 / 28

SAM results



Robotics: Introduction to perception
Vladiḿır Petŕık 10 / 28

SAM results



Robotics: Introduction to perception
Vladiḿır Petŕık 11 / 28

Segmentation

▶ Segmentation finds objects in image
▶ segmentation mask
▶ bounding box
▶ label
▶ confidence score

▶ Information only in image space

▶ How to use it in robot space?



Robotics: Introduction to perception
Vladiḿır Petŕık 12 / 28

External camera

▶ Assume camera mounted rigidly to the reference frame
▶ if we know K and TRC , how to project points xR to image?

▶ Unknown K and TRC and planar problem
▶ e.g. cubes with the same high on table desk
▶ what is the position of cube on 2D table w.r.t. 2D image/pixels coordinates?
▶ analyzed by homography



Robotics: Introduction to perception
Vladiḿır Petŕık 13 / 28

Homography

▶ Homography matrix H is 3× 3 matrix that maps points from one plane to another
▶ image plane to table desk
▶ one image plane to another image plane (different view)

▶ s
(
x y 1

)⊤
= H

(
u v 1

)⊤
▶ x, y are coordinates in the first plane
▶ u, v are coordinates in the second plane

▶ 9 elements but only 8 DoF, usually added constraint h33 = 1

▶ How to find H?
▶ H, _ = cv2.findHomography(U, X)

▶ U,X are N × 2 correspondence points
▶ e.g. measure manually

▶ position of cube center w.r.t. table corner
▶ position of cube center in image



Robotics: Introduction to perception
Vladiḿır Petŕık 14 / 28

Homography example



Robotics: Introduction to perception
Vladiḿır Petŕık 15 / 28

Non-planar pose estimation

▶ Homography maps only plane to plane
▶ More general object pose estimation in camera frame

▶ get depth by mapping from area in pixels to depth for fixed size objects
▶ get depth by additional scene information, e.g. known size/model of the objects
▶ RGBD camera
▶ additional markers



Robotics: Introduction to perception
Vladiḿır Petŕık 16 / 28

Using prior knowledge about size

▶ We know radius is fixed

▶ From detected pixels u1,u2, we can compute rays x1,x2:
1
λi
xi = K−1ui

▶ Angle between vectors: cosα =
1

λ1λ2
1

λ1λ2

x1·x2
∥x1∥∥x2∥

▶ Depth: z = r
sin(α/2) z

u1 u2

r r



Robotics: Introduction to perception
Vladiḿır Petŕık 17 / 28

Using depth sensor

▶ RGBD sensors
▶ RGB image (H ×W × 3)
▶ Depth map (H ×W × 1), distance in meters for each pixel
▶ Structured point cloud (H ×W × 3),

(
xc yc zc

)
for each pixel



Robotics: Introduction to perception
Vladiḿır Petŕık 18 / 28

How depth sensor works

▶ Laser projects pattern and camera recognizes it

▶ Depth information is computed using triangulation

o50

Camera

Laser

M
ov

in
g 

Su
pp

or
t

Object

50 cm

R
ev

ol
vi

ng
 T

ab
le



Robotics: Introduction to perception
Vladiḿır Petŕık 19 / 28

2D depth sensors

▶ Based on the structured light

▶ Projects 2D infra red patterns

▶ One projector and two cameras (RGB + IR)



Robotics: Introduction to perception
Vladiḿır Petŕık 20 / 28

Issues with depth sensors

▶ Depth reconstruction is not perfect (black areas in the image3)

▶ In python represented by NaN

▶ Not every pixel in RGB has reconstructed depth value

▶ RGB and Depth data are not aligned (you need to calibrate them)

3https://commons.wikimedia.org, User:Kolossos



Robotics: Introduction to perception
Vladiḿır Petŕık 21 / 28

Additional markers

▶ Can we compute the pose of patterns4?
▶ the size and structure needs to be known
▶ subpixel accuracy
▶ it has to be completely visible

▶ Can we compute the pose of ArUco markers?
▶ less accurate than regular patterns
▶ provides marker id and the pose
▶ it has to be completely visible

4docs.opencv.org

docs.opencv.org


Robotics: Introduction to perception
Vladiḿır Petŕık 22 / 28

Markers pose example



Robotics: Introduction to perception
Vladiḿır Petŕık 23 / 28

ChArUco board for calibration

▶ Combines accuracy of pattern with detections of ArUco

▶ Partial visibility detections



Robotics: Introduction to perception
Vladiḿır Petŕık 24 / 28

Camera matrix estimation with boards

▶ We can estimate camera matrix from correspondences in image space and spatial
space
▶ collect images of the board from different views
▶ detect boards
▶ compute correspondences between image points and board frame points
▶ _, K, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera(

obj_points, img_points, img_shape)

▶ In addition we get
▶ distortion coefficients that compensates defects of objective

Knew, roi = cv.getOptimalNewCameraMatrix(K, dist_coeffs,

img_shape, 1, img_shape)

img_undistorted = cv.undistort(img, K, dist_coeffs, None, Knew)

▶ SE(3) poses of boards in camera frame



Robotics: Introduction to perception
Vladiḿır Petŕık 25 / 28

Pose estimation from RGB(D)

▶ Pose estimation methods
▶ use prior knowledge about the task, e.g. fixed height objects on a plane
▶ use prior knowledge about the objects (size)
▶ use depth sensor
▶ use ArUco markers

▶ Where is robot?
▶ homography estimates poses of objects w.r.t. plane frame
▶ other methods estimate poses in camera frame
▶ we need to estimate/calibrate TRC



Robotics: Introduction to perception
Vladiḿır Petŕık 26 / 28

HandEye calibration
▶ Camera can be mounted w.r.t.

▶ robot base frame (eye-to-hand calibration)
▶ gripper frame (eye-in-hand calibration)

▶ Solve AiX = Y Bi

▶ measurements: Ai, Bi ∈ SE(3)
▶ estimated parameters: X,Y ∈ SE(3)

▶ X, Y = calibrateRobotWorldHandEye(A, B)
▶ Eye-to-hand calibration

▶ Ai = T i
RG

▶ Bi = T i
CT

▶ X = TGT

▶ Y = TRC

▶ Eye-in-hand calibration
▶ Ai = T i

CT
▶ Bi = T i

GR
▶ X = TTR

▶ Y = TCG



Robotics: Introduction to perception
Vladiḿır Petŕık 27 / 28

Summary

▶ Image representation

▶ Projection to/from image

▶ Segmentation in image space

▶ Homography

▶ Pose estimation from image

▶ Camera calibration



Robotics: Introduction to perception
Vladiḿır Petŕık 28 / 28

Laboratory

▶ No new homework this week

▶ Homography estimation on toy example in Python/OpenCV

▶ HandEye calibration on toy example in Python/OpenCV


