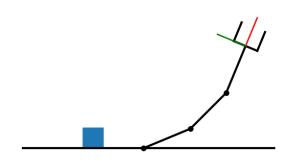


Robotics: Path and trajectory generation

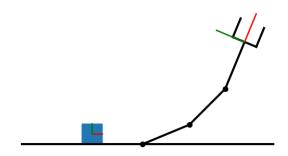
Vladimír Petrík

vladimir.petrik@cvut.cz

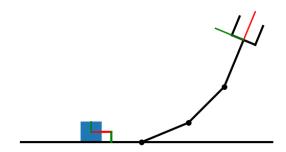
30.10.2023



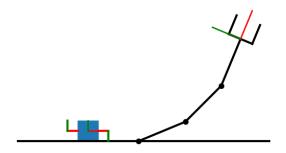
▶ Detect where the cube is in SE(2) , SE(3)



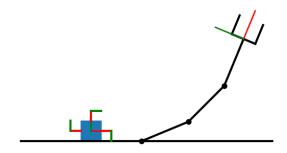
- lacktriangle Detect where the cube is in SE(2) , SE(3)
- ▶ Define handle(s) w.r.t. cube
- Compute gripper pose



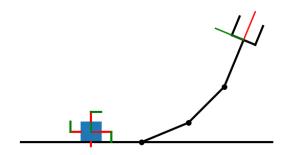
- ▶ Detect where the cube is in SE(2) , SE(3)
- ▶ Define handle(s) w.r.t. cube
- Compute gripper pose



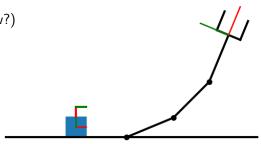
- lacktriangle Detect where the cube is in SE(2) , SE(3)
- ▶ Define handle(s) w.r.t. cube
- Compute gripper pose



- lacktriangle Detect where the cube is in SE(2) , SE(3)
- ▶ Define handle(s) w.r.t. cube
- Compute gripper pose

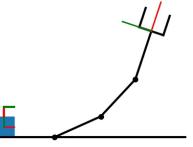


- ▶ Detect where the cube is in SE(2) , SE(3)
- Define handle(s) w.r.t. cube
- Compute gripper pose
- ► Solve IK (select one of the solutions, how?)

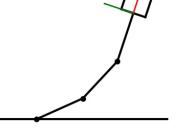


- ▶ Detect where the cube is in SE(2) , SE(3)
- Define handle(s) w.r.t. cube
- Compute gripper pose
- Solve IK (select one of the solutions, how?)
- Send robot to selected joint-space configuration
- What motion will robot follow?

- ▶ Detect where the cube is in SE(2) , SE(3)
- Define handle(s) w.r.t. cube
- Compute gripper pose
- Solve IK (select one of the solutions, how?)
- Send robot to selected joint-space configuration
- What motion will robot follow?
 - depends on the robot
 - linear interpolation in joint space is common



- lacktriangle Detect where the cube is in SE(2) , SE(3)
- Define handle(s) w.r.t. cube
- Compute gripper pose
- Solve IK (select one of the solutions, how?)
- Send robot to selected joint-space configuration
- What motion will robot follow?
 - depends on the robot
 - linear interpolation in joint space is common
 - what is motion?



Motion

- Path
 - Geometrical description (sequence of configurations)
 - No timestamps, dynamics, or control restrictions
 - $\mathbf{q}(s) \in \mathcal{C}_{\mathsf{free}}, s \in [0, 1]$
 - ▶ Main assumption is that trajectory can be computed by postprocessing

Motion

- Path
 - Geometrical description (sequence of configurations)
 - No timestamps, dynamics, or control restrictions
 - $\mathbf{q}(s) \in \mathcal{C}_{\mathsf{free}}, s \in [0, 1]$
 - Main assumption is that trajectory can be computed by postprocessing
- Trajectory
 - Robot configuration in time
 - $\mathbf{q}(t) \in \mathcal{C}_{\mathsf{free}}, \ t \in [0, T]$

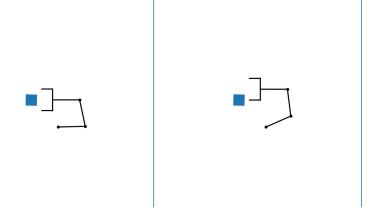
Motion

- Path
 - Geometrical description (sequence of configurations)
 - No timestamps, dynamics, or control restrictions
 - $\mathbf{q}(s) \in \mathcal{C}_{\mathsf{free}}, s \in [0, 1]$
 - ▶ Main assumption is that trajectory can be computed by postprocessing
- Trajectory
 - Robot configuration in time
 - $\mathbf{q}(t) \in \mathcal{C}_{\mathsf{free}}, \ t \in [0, T]$

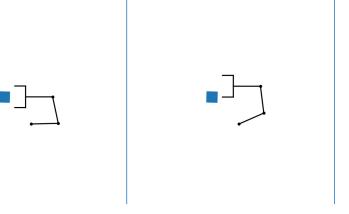
- Let us focus on path first
- ▶ Is grasping path safe? Depends on the start configuration.

- Let us focus on path first
- ▶ Is grasping path safe? Depends on the start configuration.

- Let us focus on path first
- ▶ Is grasping path safe? Depends on the start configuration.



- Let us focus on path first
- ▶ Is grasping path safe? Depends on the start configuration.

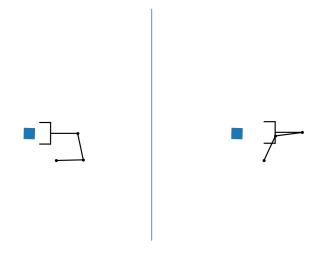


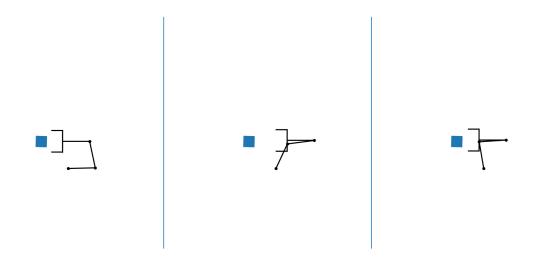
- ► We can define pre-grasp pose
 - e.g. 5 cm away from the object, w.r.t. handle
 - how to define 5 cm away? By design of handle.
 - fix handle orientation to have x-axis pointing towards the object
 - gripper orientation to have x-axis pointing out of gripper

- We can define pre-grasp pose
 - e.g. 5 cm away from the object, w.r.t. handle
 - how to define 5 cm away? By design of handle.
 - ▶ fix handle orientation to have *x*-axis pointing towards the object
 - gripper orientation to have x-axis pointing out of gripper
 - ightharpoonup grasp pose T_{RH}
 - if gripper T_{RG} equals T_{RH} , object is grasped
 - pre-grasp pose $T_{RP} = T_{RH}T_x(-\delta_{pre_grasp})$

- We can define pre-grasp pose
 - e.g. 5 cm away from the object, w.r.t. handle
 - ▶ how to define 5 cm away? By design of handle.
 - fix handle orientation to have x-axis pointing towards the object
 - gripper orientation to have x-axis pointing out of gripper
 - ightharpoonup grasp pose T_{RH}
 - ightharpoonup if gripper T_{RG} equals T_{RH} , object is grasped
 - pre-grasp pose $T_{RP} = T_{RH}T_x(-\delta_{pre_grasp})$
- ▶ Is path from pre-grasp to grasp safe if δ_{pre_grasp} is small?

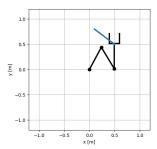
- We can define pre-grasp pose
 - e.g. 5 cm away from the object, w.r.t. handle
 - ▶ how to define 5 cm away? By design of handle.
 - fix handle orientation to have x-axis pointing towards the object
 - gripper orientation to have x-axis pointing out of gripper
 - ightharpoonup grasp pose T_{RH}
 - ▶ if gripper T_{RG} equals T_{RH} , object is grasped
 - pre-grasp pose $T_{RP} = T_{RH}T_x(-\delta_{pre_grasp})$
- ▶ Is path from pre-grasp to grasp safe if δ_{pre_grasp} is small?
- ▶ Is path from pre-grasp to grasp safe if δ_{pre_grasp} is large?

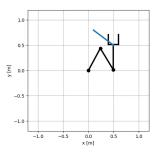


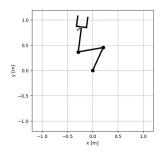


- Also called straight-line path, point-to-point path
- ightharpoonup Start q_{start}
- ightharpoonup Goal q_{goal}
- ► Easy to compute, well defined

- ► Also called straight-line path, point-to-point path
- ightharpoonup Start q_{start}
- lacktriangle Goal q_{goal}
- Easy to compute, well defined
- ▶ What is the motion of the gripper?
 - ▶ likely not straight-line (for revolute joints)
 - combinations of circular paths (for revolute joints)







Interpolation in SE(2) and SE(3)

- Straight-line path in task space
 - $\qquad \qquad \textbf{position } \ t(s) = t_{\mathsf{start}} + s(t_{\mathsf{goal}} t_{\mathsf{start}}), \quad s \in [0, 1]$

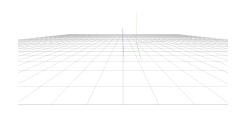
Interpolation in SE(2) and SE(3)

- Straight-line path in task space
 - ▶ position $t(s) = t_{\text{start}} + s(t_{\text{goal}} t_{\text{start}}), \quad s \in [0, 1]$
 - rotation $R(s) = R_{\mathsf{start}} \exp\left(s \log(R_{\mathsf{start}}^{-1} R_{\mathsf{goal}})\right), \quad s \in [0, 1]$

Interpolation in SE(2) and SE(3)

- Straight-line path in task space

 - ▶ position $t(s) = t_{\mathsf{start}} + s(t_{\mathsf{goal}} t_{\mathsf{start}}), \quad s \in [0, 1]$ ▶ rotation $R(s) = R_{\mathsf{start}} \exp\left(s\log(R_{\mathsf{start}}^{-1}R_{\mathsf{goal}})\right), \quad s \in [0, 1]$



Joint-space path from task-space path

- ▶ Compute q(s) from $T_{RG}(s)$
- ▶ Solve IK for each s and pick the first solution of IK?

Joint-space path from task-space path

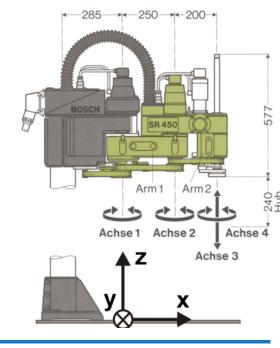
- ▶ Compute q(s) from $T_{RG}(s)$
- ▶ Solve IK for each s and pick the first solution of IK?
 - we did not define what is *first* solution of IK
 - let us use the closest solution of IK
 - can it happen that closest solution is not close enough?

Joint-space path from task-space path

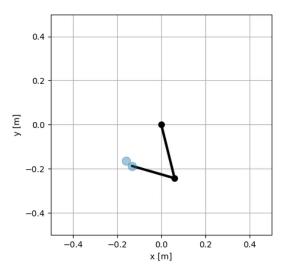
- ▶ Compute q(s) from $T_{RG}(s)$
- ▶ Solve IK for each s and pick the first solution of IK?
 - we did not define what is first solution of IK
 - let us use the closest solution of IK
 - can it happen that closest solution is not close enough? yes, let us see an example

SCARA robot

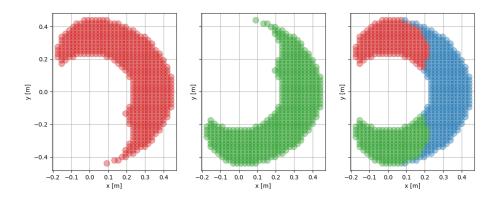
- Analyze kinematics of SCARA
- Structure RRPR
- Self-collisions avoided by joint limits
 - ► ±85°
 - ► ±120°
 - (-330 mm, 5 mm)
 - $(-20^{\circ}, 1080^{\circ})$
- Compute FK and IK in xy-plane

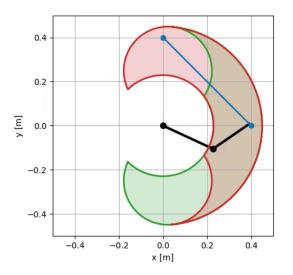


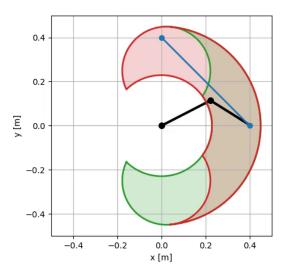
SCARA robot workspace

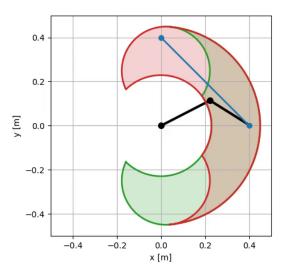


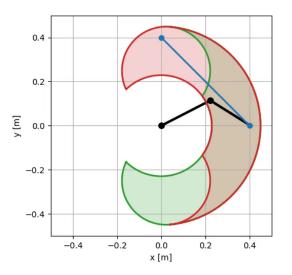
SCARA robot IK





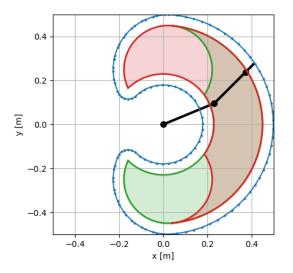






- ▶ Not all solutions of IK are available everywhere
- We need to resolve jumps in configuration space
- To change the configuration we need to pass via singularity
- ► The task-space interpolation can be used for pre-grasp to grasp path

SCARA effect of the last link



Trajectory from path

- ▶ Time scaling $s(t), t \in [0, T], s : [0, T] \rightarrow [0, 1]$
- lacktriangle A path and time scaling defines trajectory $m{q}(s(t))$
- Derivations:
 - ightharpoonup velocity: $\dot{m{q}}=rac{\mathrm{d}m{q}}{\mathrm{d}s}\dot{s}$
 - ▶ acceleration: $\ddot{q} = \frac{dq}{ds}\ddot{s} + \frac{d^2q}{ds^2}\dot{s}^2$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - ightharpoonup velocity: $\dot{m{q}} = \dot{s}(m{q}_{\sf goal} m{q}_{\sf start})$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - ightharpoonup velocity: $\dot{m{q}} = \dot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
 - ightharpoonup acceleration: $\ddot{q} = \ddot{s}(q_{\mathsf{goal}} q_{\mathsf{start}})$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - ightharpoonup velocity: $\dot{m{q}} = \dot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
 - ightharpoonup acceleration: $\ddot{q} = \ddot{s}(q_{\mathsf{goal}} q_{\mathsf{start}})$

- ► Path
 - **>** position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - lacktriangledown velocity: $\dot{m{q}}=\dot{s}(m{q}_{\mathsf{goal}}-m{q}_{\mathsf{start}})$
 - lacktriangle acceleration: $\ddot{m{q}}=\ddot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
- ▶ 3rd order polynomial time scaling
 - $b s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$

- Path
 - **>** position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - lacktriangledown velocity: $\dot{m{q}}=\dot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
 - lacktriangle acceleration: $\ddot{m{q}}=\ddot{s}(m{q}_{\mathsf{goal}}-m{q}_{\mathsf{start}})$
- 3rd order polynomial time scaling
 - $s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
 - $\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - $lackbox{ velocity: } \dot{m{q}} = \dot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
 - lacktriangle acceleration: $\ddot{m{q}}=\ddot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
- 3rd order polynomial time scaling
 - $s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
 - $\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$
 - constraints: $s(0) = \dot{s}(0) = 0$, s(T) = 1, $\dot{s}(T) = 0$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - lacktriangle velocity: $\dot{m{q}}=\dot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
 - lacktriangle acceleration: $\ddot{m{q}} = \ddot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
- ▶ 3rd order polynomial time scaling
 - $b s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
 - $\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$
 - constraints: $s(0) = \dot{s}(0) = 0$, s(T) = 1, $\dot{s}(T) = 0$
 - lack solution that satisfies constraints: $a_0 = 0$, $a_1 = 0$, $a_2 = 3/T^2$, $a_3 = -2/T^3$

- Path
 - ightharpoonup position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - $lackbox{ velocity: } \dot{m{q}} = \dot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
 - $lackbox{}$ acceleration: $\ddot{m{q}}=\ddot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
- 3rd order polynomial time scaling
 - $b s(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$
 - $\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$
 - constraints: $s(0) = \dot{s}(0) = 0$, s(T) = 1, $\dot{s}(T) = 0$
 - **>** solution that satisfies constraints: $a_0 = 0$, $a_1 = 0$, $a_2 = 3/T^2$, $a_3 = -2/T^3$
- Trajectory
 - $m{p}$ $m{q}(t) = m{q}_{\mathsf{start}} + \left(rac{3t^2}{T^2} rac{2t^3}{T^3}
 ight) (m{q}_{\mathsf{goal}} m{q}_{\mathsf{start}})$
 - $\dot{m{q}} = \left(rac{6t}{T^2} rac{2t^2}{T^3}
 ight) (m{q}_{\sf goal} m{q}_{\sf start})$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - ightharpoonup velocity: $\dot{m{q}}=\dot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
 - lacktriangle acceleration: $\ddot{m{q}} = \ddot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
- ▶ 3rd order polynomial time scaling

$$\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$$

• constraints:
$$s(0) = \dot{s}(0) = 0$$
, $s(T) = 1$, $\dot{s}(T) = 0$

- ▶ solution that satisfies constraints: $a_0 = 0$, $a_1 = 0$, $a_2 = 3/T^2$, $a_3 = -2/T^3$
- Trajectory

$$m{p}$$
 $m{q}(t) = m{q}_{\mathsf{start}} + \left(rac{3t^2}{T^2} - rac{2t^3}{T^3}
ight)(m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$

$$\dot{m{q}} = \left(rac{6t}{T^2} - rac{2t^2}{T^3}
ight) (m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$$

$$m{\ddot{q}} = \left(rac{6}{T^2} - rac{12t}{T^3}
ight) (m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$$

- Path
 - ▶ position: $q(s) = q_{\text{start}} + s(q_{\text{goal}} q_{\text{start}}), \quad s \in [0, 1]$
 - ightharpoonup velocity: $\dot{m{q}}=\dot{s}(m{q}_{\sf goal}-m{q}_{\sf start})$
 - lacktriangle acceleration: $\ddot{m{q}} = \ddot{s}(m{q}_{\sf goal} m{q}_{\sf start})$
- ▶ 3rd order polynomial time scaling

$$\dot{s}(t) = a_1 + 2a_2t + 3a_3t^2$$

• constraints:
$$s(0) = \dot{s}(0) = 0$$
, $s(T) = 1$, $\dot{s}(T) = 0$

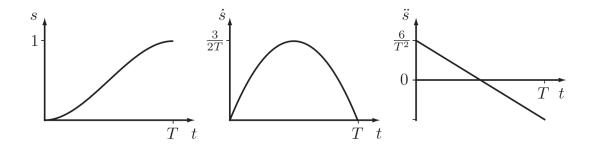
- ▶ solution that satisfies constraints: $a_0 = 0$, $a_1 = 0$, $a_2 = 3/T^2$, $a_3 = -2/T^3$
- Trajectory

$$m{p}$$
 $m{q}(t) = m{q}_{\mathsf{start}} + \left(rac{3t^2}{T^2} - rac{2t^3}{T^3}
ight)(m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$

$$\dot{m{q}} = \left(rac{6t}{T^2} - rac{2t^2}{T^3}
ight) (m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$$

$$m{\ddot{q}} = \left(rac{6}{T^2} - rac{12t}{T^3}
ight) (m{q}_{\mathsf{goal}} - m{q}_{\mathsf{start}})$$

3rd order polynomial time scaling



- Maximum joint velocities:
 - t = T/2
 - $\dot{m{q}}_{\mathsf{max}} = rac{3}{2T}(m{q}_{\mathsf{goal}},m{q}_{\mathsf{start}})$
- ► Maximum joint acceleration:
 - ightharpoonup t=0 and t=T
 - $\ddot{m{q}}_{\mathsf{max}} = \left\| rac{6}{T^2}(m{q}_{\mathsf{goal}},m{q}_{\mathsf{start}})
 ight\|$
 - $\ddot{m{q}}_{\mathsf{min}} = -\left\|rac{6}{T^2}(m{q}_{\mathsf{goal}},m{q}_{\mathsf{start}})
 ight\|$
- ► How to use this information?

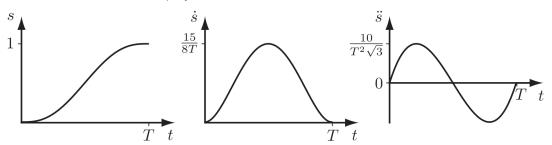
- Maximum joint velocities:
 - t = T/2

$$\dot{m{q}}_{\sf max} = rac{3}{2T}(m{q}_{\sf goal},m{q}_{\sf start})$$

- Maximum joint acceleration:
 - ightharpoonup t=0 and t=T
 - $\ddot{m{q}}_{\mathsf{max}} = \left\| rac{6}{T^2}(m{q}_{\mathsf{goal}},m{q}_{\mathsf{start}})
 ight\|_{T^2}$
 - $\ddot{m{q}}_{\mathsf{min}} = -\left\|rac{6}{T^2}(m{q}_{\mathsf{goal}},m{q}_{\mathsf{start}})
 ight\|$
- ► How to use this information?
 - check if requested motion T is feasible given the velocity/acceleration limits
 - ▶ find minimum T such that velocity and acceleration constraints are satisfied

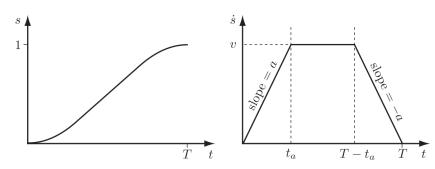
5th order polynomial

- > 3rd order polynomial does not enforce zero acceleration at the beginning and end
 - ▶ infinite jerk (derivative of acceleration)
 - can cause vibrations
- ▶ We can use 5th order polynomial



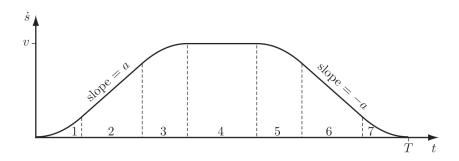
Trapezoidal time scaling

- Constant acceleration phase
- Constant velocity phase
- Constant deceleration phase
- ▶ Not smooth but it is the fastest straight-line motion possible



S-Curve time scaling

- Trapezoidal motions cause discontinuous jumps in acceleration
- S-curve smooths it to avoid vibrations
 - constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk, constant deceleration, constant jerk



Summary

- Path/Trajectory
- Grasping path generation
- Interpolation in joint space and task space
- ► Time scaling parameterization

Laboratory

- Laboratories this week are mandatory
 - safety
 - robot control tutorial
- ► Room: JP-B-415
 - ► TA will pick you up in front of the room