- ||CTU
R

UNIVERSITY
IN PRAGUE

Robotics: Path and trajectory generation

Vladimir Petrik
vladimir.petrik@cvut.cz

30.10.2023

Motivation: pick a cube

‘ﬂ-?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
> Compute gripper pose

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
> Compute gripper pose

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
> Compute gripper pose

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
> Compute gripper pose

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 2/25

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
> Compute gripper pose

> Solve IK (select one of the solutions, how?)

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/25

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)

Send robot to selected joint-space configuration
What motion will robot follow?

RL%;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/25

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

RL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/25

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

> what is motion? i

RL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/25

Motion

> Path

> Geometrical description (sequence of configurations)

> No timestamps, dynamics, or control restrictions

> Q(s) S Cfreeas S [O,]-]

» Main assumption is that trajectory can be computed by postprocessing

‘\L?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/25

Motion

> Path

> Geometrical description (sequence of configurations)

» No timestamps, dynamics, or control restrictions

> g(s) € Crree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

> Robot configuration in time
» q(t) € Cree, t € [0,T]

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/25

Motion

> Path

> Geometrical description (sequence of configurations)

> No timestamps, dynamics, or control restrictions

> q(s) € Crree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

> Robot configuration in time
> Q(t) S Cfreex te [OaT]

1 S N

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/25

Grasping path

> Let us focus on path first
> s grasping path safe? Depends on the start configuration.

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 4/25

Grasping path

> Let us focus on path first
> s grasping path safe? Depends on the start configuration.

"

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 4/25

Grasping path

> Let us focus on path first
> s grasping path safe? Depends on the start configuration.

1]1 m

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 4/25

Grasping path

> Let us focus on path first
> s grasping path safe? Depends on the start configuration.

1]1 m I]P

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 4/25

Pre-grasp pose

» We can define pre-grasp pose
» e.g. 5 cm away from the object, w.r.t. handle
> how to define 5 cm away? By design of handle.
> fix handle orientation to have z-axis pointing towards the object
> gripper orientation to have z-axis pointing out of gripper

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5/25

Pre-grasp pose

» We can define pre-grasp pose

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have x-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Trp
if gripper Tra equals Try, object is grasped
pre-grasp pose Trp = TRHTx(fapre,grasp)

VVV VVYVYY

RL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5/25

Pre-grasp pose

» We can define pre-grasp pose

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have x-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Trp
if gripper Tra equals Try, object is grasped
> pre-grasp pose TRP = TRHTx(fapre,grasp)

» |s path from pre-grasp to grasp safe if dpre_grasp is small?

VyVVy VVYVYY

RL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5/25

Pre-grasp pose

» We can define pre-grasp pose

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have x-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Trp
if gripper Tra equals Try, object is grasped
> pre-grasp pose TRP = TRHTx(fapre,grasp)

» |s path from pre-grasp to grasp safe if dpre_grasp is small?

VyVVy VVYVYY

> |s path from pre-grasp to grasp safe if dpre grasp is large?

RL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5/25

Pre-grasp pose

ga

9/‘ Robotics: Path and trajectory generation
Vladimir Petrik 6 /25

Pre-grasp pose

ga

e

feRe

Robotics: Path and trajectory generation

Vladimir Petrik

6/25

Pre-grasp pose

ga

e

feRe

Robotics: Path and trajectory generation

Vladimir Petrik

6/25

Interpolation in joint space

Also called straight-line path, point-to-point path
Start gstart

Q(S) = Qstart + S(ngal - QStart)a s € [07 1]

>
>
> Goal ggoal
>
» Easy to compute, well defined

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 7/25

Interpolation in joint space

> Also called straight-line path, point-to-point path
> Start Qstart

> Goal ggoa

> Q(S) = Qstart + S(ngal - QStart)a s € [07 1]

> Easy to compute, well defined

>

What is the motion of the gripper?

> likely not straight-line (for revolute joints)
> combinations of circular paths (for revolute joints)

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 7/25

Interpolation in joint space

‘ﬂ'g/‘ Robotics: Path and trajectory generation
J g Vladimir Petrik

8/25

Interpolation in joint space

‘ﬂ'? Robotics: Path and trajectory generation
/ Vladimir Petrik

8/25

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), S € [0,1]

‘ﬂ'&‘ Robotics: Path and trajectory generation
/ J g Vladimir Petrik 9/25

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
> position t(s) = tstart + S(tgoal — tstart), S € [0,1]
> rotation R(s) = Raare exp (s log(ReaRgoal)) s s € [0, 1]

“&?p/‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 9 /25

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), S € [0,1]
> rotation R(s) = Raar exp (slog(ReaRgoal)) s s € [0, 1]

_
-

“&?p/‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 9 /25

Joint-space path from task-space path

» Compute g(s) from Tra(s)
» Solve IK for each s and pick the first solution of IK?

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 10 / 25

Joint-space path from task-space path

» Compute g(s) from Tra(s)
» Solve IK for each s and pick the first solution of IK?

» we did not define what is first solution of IK
» let us use the closest solution of IK
P> can it happen that closest solution is not close enough?

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 10 / 25

Joint-space path from task-space path

» Compute g(s) from Tra(s)
» Solve IK for each s and pick the first solution of IK?

» we did not define what is first solution of IK
» let us use the closest solution of IK
P can it happen that closest solution is not close enough? yes, let us see an example

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 10 / 25

—285—»+—250 *erOOj

SCARA robot

>

» Analyze kinematics of SCARA
» Structure RRPR

> Self-collisions avoided by joint limits

> +85°

> +120°

> (—330 mm, 5 mm)
> (—20°,1080°)

» Compute FK and IK in xy-plane

577

Robotics: Path and trajectory generation
Vladimir Petrik 11 /25

SCARA robot workspace

0.4

0.2

E 00+
=

_0.2 -

70.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
X [m]

/ﬂu?;/‘ Robotics: Path and trajectory generation
WF

Vladimir Petrik 12 /25

SCARA robot IK

0.4 4

0.2

0.0

y [m]

-0.2

-0.4

-02 -0.1 00

y [m]

y [m]

T T
01 02 03 04
x [m]

-02 -01 00 01 02 03 04
x [m]

feRe

Robotics: Path and trajectory generation

Vladimir Petrik

13/ 25

Task-space interpolation

0.4

0.2

E 001
=

_0.2 -

70.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
x [m]

/‘ﬂv?p/‘ Robotics: Path and trajectory generation

YWY Viadimir Petrik 14 / 25

Task-space interpolation

0.4 4

0.2

0.0

y [m]

—0.2 1

—0.4 4

T
—-0.4 —-0.2 0.0 0.2 0.4
x [m]

/‘ﬂv?p/‘ Robotics: Path and trajectory generation

YWY Viadimir Petrik 14 / 25

Task-space interpolation

0.4

0.2

E o0-
=3

_0.2 -

70.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
x [m]

/‘ﬂv?p/‘ Robotics: Path and trajectory generation

YWY Viadimir Petrik 14 / 25

Task-space interpolation

0.4

0.2

E 00+
=

_0.2 -

70.4 -4

T T T T T
-0.4 -0.2 0.0 0.2 0.4
X [m]

/‘ﬂv?p/‘ Robotics: Path and trajectory generation

YWY Viadimir Petrik 14 / 25

Task space interpolation

> Not all solutions of IK are available everywhere
» We need to resolve jumps in configuration space
» To change the configuration we need to pass via singularity

» The task-space interpolation can be used for pre-grasp to grasp path

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 15/ 25

SCARA effect of the last link

0.4

0.2

E 00+
=

_0.2 -

70.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
x [m]

/“w‘ Robotics: Path and trajectory generation
F

Vladimir Petrik 16 / 25

Trajectory from path

» Time scaling s(t), t € [0,T], s: [0,T] — [0, 1]
» A path and time scaling defines trajectory q(s(t))
» Derivations:

> velocity: ¢ = j—gé
. . . 2 .
» acceleration: ¢ = i—gs + 37‘2152

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 17 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ngal - QStart)

‘ﬂ'&‘ Robotics: Path and trajectory generation
/ J g Vladimir Petrik 18 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ggoal — Gstart)
> acceleration: ¢ = §(qgoal — Gstart)

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 18 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ggoal — Gstart)
> acceleration: ¢ = §(qgoal — Gstart)

“&%‘ Robc_)ti(fs: Pat'h and trajectory generation
YWY Viadimir Petrik 18 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ggoal — Gstart)
> acceleration: ¢ = §(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 18 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ggoal — Gstart)
> acceleration: ¢ = §(qgoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> S(t) =a) + 2a2t + 3a3t2

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 18 / 25

Straight-line path time scaling

> Path
> pOSition: q(s) = Qstart + S(qgoal - qstart), s € [Oa 1]
> VeIOCity: q = $(ngal - QStart)
> acceleration: ¢ = 5(ggoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> 5(t) = a1 + 2aat + 3agt?
> constraints: s(0) =5(0) =0, s(T) =1, $(T)=0

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 18 / 25

Straight-line path time scaling

» Path

> position: q(s) = Gstart + S(@goal — Gstart), S € [0,1]
> velocity: ¢ = $(ggoal — Gstart)
> acceleration: ¢ = §(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2aat + 3agt?
> constraints: s(0) =5(0) =0, s(T) =1, $(T)=0
> solution that satisfies constraints: ag =0, a3 =0, as=3/T? a3=—-2/T°

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 18 / 25

Straight-line path time scaling

» Path

> pOSition: Q(S) = Qstart + S(ngal - QStart), s € [Oa 1}

> velocity: ¢ = $(ngal - qstart)

> acceleration: ¢ = §(qgoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2aat + 3agt?

> constraints: s(0) =5(0) =0, s(T) =1, $(T)=0

> solution that satisfies constraints: ag =0, a3 =0, as=3/T? a3=—-2/T°
» Trajectory

2 3
> q(t) = Qstart + (% - %) (qgoal - QStart)

. 2
> q= (% - 2TLB) (ngal - qstart)

‘\L?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 25

Straight-line path time scaling

> Path
> pOSition: q(S) = (start + S(qgoal - qstart), ERS [07 1}
> Ve|OCity: q = é(qgoal - qstart)
> acceleration: ¢ = 5(ggoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> S(t) = ai + 2a2t + 3a3t2
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ag =0, a3 =0, as=3/T? a3=—-2/T°
» Trajectory
2 3
> q(t) = Qstart + (% - 27%) (qgoal - QStart)
. 2
> q= (% - 27*%) (qgoal - (IStart)

> q = (7 - %) (qgoal - qstart)

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 25

Straight-line path time scaling

> Path
> pOSition: q(S) = (start + S(qgoal - qstart), ERS [07 1}
> Ve|OCity: q = é(qgoal - qstart)
> acceleration: ¢ = 5(ggoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> S(t) = ai + 2a2t + 3a3t2
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ag =0, a3 =0, as=3/T? a3=—-2/T°
» Trajectory
2 3
> q(t) = Qstart + (% - 27%) (qgoal - QStart)
. 2
> q= (% - 27*%) (qgoal - (IStart)

> q = (7 - %) (qgoal - qstart)

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 25

3rd order polynomial time scaling

‘ﬂ-?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 19 / 25

Straight-line path time scaling

> Maximum joint velocities:
> t=T/2
» Gmax = %(qgoaly QStart)
> Maximum joint acceleration:
> t=0andt=T
¥ Gmax = H%(ngala QStart)H
> Gmin = — H %(ngaly QStart)H
» How to use this information?

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 20/ 25

Straight-line path time scaling

> Maximum joint velocities:
> t=T/2
P Gmax = %(qgoaly qstart)
> Maximum joint acceleration:
> t=0andt=T
> dmax = H%(ngala qstart)H
> Gmin = — H %(qgoalv QStart)H
» How to use this information?

> check if requested motion T is feasible given the velocity/acceleration limits
» find minimum T such that velocity and acceleration constraints are satisfied

QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 20/ 25

5th order polynomial

» 3rd order polynomial does not enforce zero acceleration at the beginning and end

> infinite jerk (derivative of acceleration)
P can cause vibrations

» We can use 5th order polynomial

s . .
“A “A
1 15 | 10 |
8T T2/3
0 >
\/T t
> ——
T t T 1
QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 21/ 25

Trapezoidal time scaling

» Constant acceleration phase
» Constant velocity phase
» Constant deceleration phase

» Not smooth but it is the fastest straight-line motion possible

S A S A

11 el :

‘\L?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 22 /25

S-Curve time scaling

» Trapezoidal motions cause discontinuous jumps in acceleration
» S-curve smooths it to avoid vibrations

> constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk,
constant deceleration, constant jerk

A
Ch T T
2/ | | %,
Q‘b ! ! ! ! © “
N N
: : ! ! ’
i o9 i3 o4 s b6 N
T i
QL?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 23 /25

Summary

» Path/Trajectory
» Grasping path generation
» Interpolation in joint space and task space

» Time scaling parameterization

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 24 /25

Laboratory

» Laboratories this week are mandatory

> safety
» robot control tutorial

» Room: JP-B-415
> TA will pick you up in front of the room

‘\L?;/‘ Robotics: Path and trajectory generation
/\a"l Vladimir Petrik 25 /25

