CTU

CZECH TECHNICAL UNIVERSITY in Prague

Robotics: Path and trajectory generation

Vladimír Petrík
vladimir.petrik@cvut.cz
30.10.2023

Motivation: pick a cube

- Detect where the cube is in $S E(2), S E(3)$
- Define handle(s) w.r.t. cube
- Compute gripper pose
- Solve IK (select one of the solutions, how?)

Send robot to selected joint-space configuration

- What motion will robot follow?
- depends on the robot
- linear interpolation in joint space is common
- what is motion?

Motion

Path

- Geometrical description (sequence of configurations)
- No timestamps, dynamics, or control restrictions
- $\boldsymbol{q}(s) \in \mathcal{C}_{\text {free }}, s \in[0,1]$
- Main assumption is that trajectory can be computed by postprocessing
- Trajectory
- Robot configuration in time
- $\boldsymbol{q}(t) \in \mathcal{C}_{\text {free }}, t \in[0, T]$

Robotics: Path and trajectory generation

Grasping path

- Let us focus on path first
- Is grasping path safe? Depends on the start configuration.

Robotics: Path and trajectory generation
Vladimír Petrík

Pre-grasp pose

We can define pre-grasp pose

- e.g. 5 cm away from the object, w.r.t. handle
- how to define 5 cm away? By design of handle.
- fix handle orientation to have x-axis pointing towards the object
- gripper orientation to have x-axis pointing out of gripper
- grasp pose $T_{R H}$
- if gripper $T_{R G}$ equals $T_{R H}$, object is grasped
- pre-grasp pose $T_{R P}=T_{R H} T_{x}\left(-\delta_{\text {pre_grasp }}\right)$

Is path from pre-grasp to grasp safe if $\delta_{\text {pre_grasp }}$ is small?

- Is path from pre-grasp to grasp safe if $\delta_{\text {pre_grasp }}$ is large?

Pre-grasp pose

Robotics: Path and trajectory generation
Vladimír Petrík

Interpolation in joint space

Also called straight-line path, point-to-point path
Start $\boldsymbol{q}_{\text {start }}$
Goal $\boldsymbol{q}_{\text {goal }}$

- $\boldsymbol{q}(s)=\boldsymbol{q}_{\text {start }}+s\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right), \quad s \in[0,1]$
- Easy to compute, well defined
- What is the motion of the gripper?
- likely not straight-line (for revolute joints)
- combinations of circular paths (for revolute joints)

Interpolation in joint space

Robotics: Path and trajectory generation
Vladimír Petrík

Interpolation in $S E(2)$ and $S E(3)$

Straight-line path in task space

- position $\boldsymbol{t}(s)=\boldsymbol{t}_{\text {start }}+s\left(\boldsymbol{t}_{\text {goal }}-\boldsymbol{t}_{\text {start }}\right), \quad s \in[0,1]$
- rotation $R(s)=R_{\text {start }} \exp \left(s \log \left(R_{\text {start }}^{-1} R_{\text {goal }}\right)\right), \quad s \in[0,1]$

Robotics: Path and trajectory generation
Vladimír Petrík

Joint-space path from task-space path

- Compute $\boldsymbol{q}(s)$ from $T_{R G}(s)$
- Solve IK for each s and pick the first solution of IK?
- we did not define what is first solution of IK
- let us use the closest solution of IK
- can it happen that closest solution is not close enough? yes, let us see an example

SCARA robot

- Analyze kinematics of SCARA
- Structure RRPR
- Self-collisions avoided by joint limits
- $\pm 85^{\circ}$
- $\pm 120^{\circ}$
- ($-330 \mathrm{~mm}, 5 \mathrm{~mm}$)
- $\left(-20^{\circ}, 1080^{\circ}\right)$
- Compute FK and IK in $x y$-plane

Robotics: Path and trajectory generation
Vladimír Petrík

SCARA robot workspace

Robotics: Path and trajectory generation
Vladimír Petrík
12 / 25

SCARA robot IK

Vladimír Petrík

Task-space interpolation

Robotics: Path and trajectory generation
Vladimír Petrík
14 / 25

Task space interpolation

- Not all solutions of IK are available everywhere
- We need to resolve jumps in configuration space
- To change the configuration we need to pass via singularity
- The task-space interpolation can be used for pre-grasp to grasp path

SCARA effect of the last link

Robotics: Path and trajectory generation
Vladimír Petrík

Trajectory from path

- Time scaling $s(t), t \in[0, T], s:[0, T] \rightarrow[0,1]$
- A path and time scaling defines trajectory $\boldsymbol{q}(s(t))$
- Derivations:
- velocity: $\dot{\boldsymbol{q}}=\frac{\mathrm{d} \boldsymbol{q}}{\mathrm{d} s} \dot{s}$
- acceleration: $\ddot{\boldsymbol{q}}=\frac{\mathrm{d} \boldsymbol{q}}{\mathrm{d} s} \ddot{s}+\frac{\mathrm{d}^{2} \boldsymbol{q}}{\mathrm{~d} s^{2}} \dot{s}^{2}$

Straight-line path time scaling

Path

position: $\boldsymbol{q}(s)=\boldsymbol{q}_{\text {start }}+s\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right), \quad s \in[0,1]$

- velocity: $\dot{\boldsymbol{q}}=\dot{s}\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right)$
- acceleration: $\ddot{\boldsymbol{q}}=\ddot{s}\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right)$

3rd order polynomial time scaling

- $s(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$
- $\dot{s}(t)=a_{1}+2 a_{2} t+3 a_{3} t^{2}$
- constraints: $s(0)=\dot{s}(0)=0, s(T)=1, \dot{s}(T)=0$
- solution that satisfies constraints: $a_{0}=0, \quad a_{1}=0, \quad a_{2}=3 / T^{2}, \quad a_{3}=-2 / T^{3}$

Trajectory

- $\boldsymbol{q}(t)=\boldsymbol{q}_{\text {start }}+\left(\frac{3 t^{2}}{T^{2}}-\frac{2 t^{3}}{T^{3}}\right)\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right)$
- $\dot{\boldsymbol{q}}=\left(\frac{6 t}{T^{2}}-\frac{2 t^{2}}{T^{3}}\right)\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right)$
- $\ddot{\boldsymbol{q}}=\left(\frac{6}{T^{2}}-\frac{12 t}{T^{3}}\right)\left(\boldsymbol{q}_{\text {goal }}-\boldsymbol{q}_{\text {start }}\right)$

3rd order polynomial time scaling

Straight-line path time scaling

Maximum joint velocities:

- $t=T / 2$
- $\dot{\boldsymbol{q}}_{\text {max }}=\frac{3}{2 T}\left(\boldsymbol{q}_{\text {goal }}, \boldsymbol{q}_{\text {start }}\right)$

Maximum joint acceleration:

- $t=0$ and $t=T$
- $\ddot{\boldsymbol{q}}_{\text {max }}=\left\|\frac{6}{T^{2}}\left(\boldsymbol{q}_{\text {goal }}, \boldsymbol{q}_{\text {start }}\right)\right\|$
$-\ddot{\boldsymbol{q}}_{\text {min }}=-\left\|\frac{6}{T^{2}}\left(\boldsymbol{q}_{\text {goal }}, \boldsymbol{q}_{\text {start }}\right)\right\|$
How to use this information?
- check if requested motion T is feasible given the velocity/acceleration limits
- find minimum T such that velocity and acceleration constraints are satisfied

5th order polynomial

3rd order polynomial does not enforce zero acceleration at the beginning and end

- infinite jerk (derivative of acceleration)
- can cause vibrations
- We can use 5th order polynomial

Trapezoidal time scaling

Constant acceleration phase

- Constant velocity phase

Constant deceleration phase

- Not smooth but it is the fastest straight-line motion possible

Robotics: Path and trajectory generation
Vladimír Petrík

S-Curve time scaling

Trapezoidal motions cause discontinuous jumps in acceleration

- S-curve smooths it to avoid vibrations
- constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk, constant deceleration, constant jerk

Robotics: Path and trajectory generation
Vladimír Petrík

Summary

Path/Trajectory

- Grasping path generation
- Interpolation in joint space and task space
- Time scaling parameterization

Robotics: Path and trajectory generation
Vladimír Petrík

Laboratory

Laboratories this week are mandatory

- safety
- robot control tutorial

Room: JP-B-415

- TA will pick you up in front of the room

