
Robotics: Task and Motion Planning

Vladimír Petrík vladimir.petrik@cvut.cz 13.11.2023

Motivation

We know how to plan motion for a robot in robot's configuration space

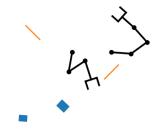
- manually define handle on object
- computer grasp and pre-grasp for detected object's pose
- plan motion to pre-grasp
- interpolate to grasp, grasp
- interpolate to pre-grasp
- plan motion to pre-place, place, release, pre-place

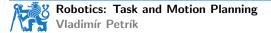
Motivation

We know how to plan motion for a robot in robot's configuration space

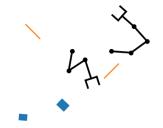
- manually define handle on object
- computer grasp and pre-grasp for detected object's pose
- plan motion to pre-grasp
- interpolate to grasp, grasp
- interpolate to pre-grasp
- plan motion to pre-place, place, release, pre-place
- What if we have many handles? Many objects?
- Manipulation Task and Motion Planning (TAMP)

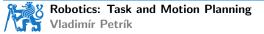
Motivation


We know how to plan motion for a robot in robot's configuration space

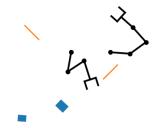

- manually define handle on object
- computer grasp and pre-grasp for detected object's pose
- plan motion to pre-grasp
- interpolate to grasp, grasp
- interpolate to pre-grasp
- plan motion to pre-place, place, release, pre-place
- What if we have many handles? Many objects?
- Manipulation Task and Motion Planning (TAMP)
 - simultaneously plan task and motion solutions
 - task is the sequence of grasps and placements (discrete space)
 - motion is the sequence of robot configurations (continuous space)
 - Humanoid Path Planning (HPP) software approach

Configuration Space


- Multiple grippers connected to robots
- Environment surfaces that can be used for placing an object
- Multiple objects
 - multiple handles per object
 - multiple contact surfaces per object



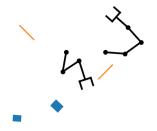
Configuration Space

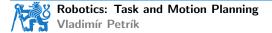

- Multiple grippers connected to robots
- Environment surfaces that can be used for placing an object
- Multiple objects
 - multiple handles per object
 - multiple contact surfaces per object
- Configuration space is the set of all possible configurations of all objects and robots
 - $\blacktriangleright \ \mathcal{C} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \dots \times SE(3)^M$
 - N_i DoF of the *i*-th robot
 - M number of objects



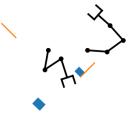
Configuration Space

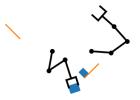
- Multiple grippers connected to robots
- Environment surfaces that can be used for placing an object
- Multiple objects
 - multiple handles per object
 - multiple contact surfaces per object




- Configuration space is the set of all possible configurations of all objects and robots
 - $\blacktriangleright \ \mathcal{C} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \dots \times SE(3)^M$
 - N_i DoF of the *i*-th robot
 - M number of objects
 - however, not all configuration are feasible
 - constraints are used to define feasible configurations

Constraints

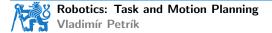

Object is placed or grasped, i.e. cannot fly


Constraints

- Object is placed or grasped, i.e. cannot fly
- Placement constraint
 - object lies on a surface
 - numerical constraints
 - object surface is placed on an environment surface



Constraints



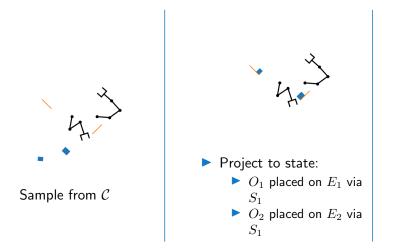
- Object is placed or grasped, i.e. cannot fly
- Placement constraint
 - object lies on a surface
 - numerical constraints
 - object surface is placed on an environment surface
- Grasp constraint
 - object is grasped by a gripper
 - numerical constraint
 - handle frame equals gripper frame

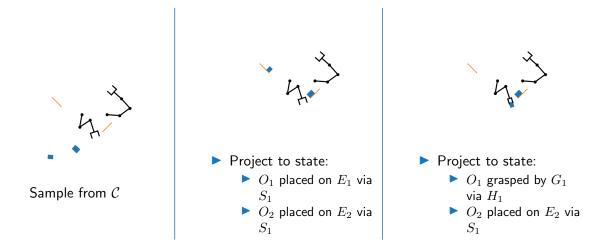
Stav (state)

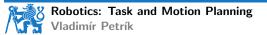
- State is a set of constraints
- Manifold of feasible configurations in the configuration space
- For example, one state can be defined by constraining both objects
 - object O_1 is placed on the surface E_1 via object surface S_1
 - object O_2 is grasped by the gripper G_1 via handle H_1

Stav (state)

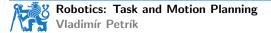
- State is a set of constraints
- Manifold of feasible configurations in the configuration space
- For example, one state can be defined by constraining both objects
 - object O_1 is placed on the surface E_1 via object surface S_1
 - object O_2 is grasped by the gripper G_1 via handle H_1
- How to sample configuration from a state?
 - \blacktriangleright sample from the C
 - geometric projection to satisfy all the constraints
 - numerical optimization (Newton-Raphson) to satisfy all the constraints


Sampling from states




Sampling from states

Sampling from states



Transitions

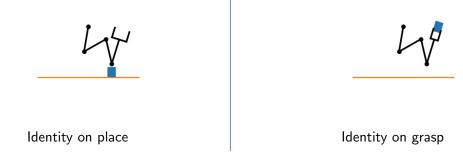
Transition defines motion between two states

- identity transition allows to move robot inside the state
- place transition allows to move object from the gripper to the surface
- grasp transition allows to move object from the surface to the gripper

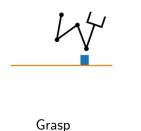
Transitions

Transition defines motion between two states

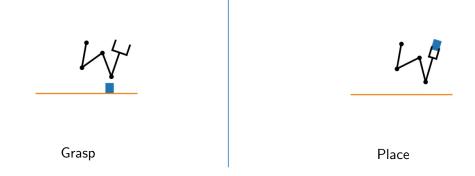
- identity transition allows to move robot inside the state
- place transition allows to move object from the gripper to the surface
- grasp transition allows to move object from the surface to the gripper
- Sampling on transitions vs sampling on states
 - transition respect constraints from the given state
 - for example, identity on place state will not move object (sampling on state can move object)
 - grasp transition is specified to move via pre-grasp
 - place transition is specified to move via pre-place


Interpolate between two configurations but respect constraints of the states/transition

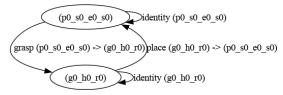
Identity on place



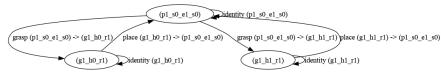
Interpolate between two configurations but respect constraints of the states/transition



Interpolate between two configurations but respect constraints of the states/transition

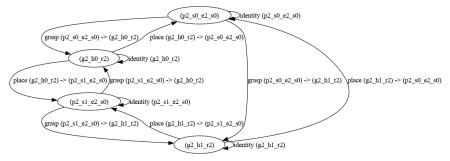

Interpolate between two configurations but respect constraints of the states/transition

Constraint graph


- Defines all possible transitions between existing states
- Example: single arm, one object

Constraint graph

- Defines all possible transitions between existing states
- Example: single arm, one object

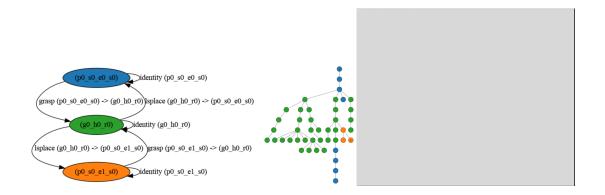


Constraint graph

Defines all possible transitions between existing states

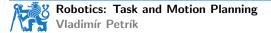
Example: single arm, one object




RRT on constraint graph

Random sampling q_{rand}

- sample random transition
- select random existing configuration from the transition source
- sample random configuration from the transition target reachable from beginning
- Nearest neighbor q_{tree}
 - node that is closest to q_{rand} via interpolation on the transition
- Local planner uses interpolation on transition


RRT on constraint graph


Configuration space for TAMP is complex

- discrete set of states
- continuous motion
- encoded by constraint graph that allow us to use RRT

Configuration space for TAMP is complex

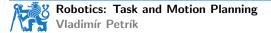
- discrete set of states
- continuous motion
- encoded by constraint graph that allow us to use RRT
- Usually not used in industry
 - task space sequence is hard-coded by programmers
 - only motion is found by motion planners (if cannot be hard-coded)

Configuration space for TAMP is complex

- discrete set of states
- continuous motion
- encoded by constraint graph that allow us to use RRT
- Usually not used in industry
 - task space sequence is hard-coded by programmers
 - only motion is found by motion planners (if cannot be hard-coded)
- ► How to avoid hard-coding? Video demonstration.

Multi-Contact Task and Motion Planning Guided by Video Demonstration

Kateryna Zorina ♣ David Kovar ♣ Florent Lamiraux ◊ Nicolas Mansard ◊ Justin Carpentier ♥ Josef Sivic ♣ Vladimir Petrik ♣



- & CIIRC, Czech Technical University in Prague
- ◊ LAAS-CNRS, Universite de Toulouse, CNRS, Toulouse
- ♥ INRIA, Paris

Laboratories

- Consultation on the final project
- Final project is now described on the course web page
- New interface for Bosch robot [optional]
 - fixed FK, IK
 - > you can install it on your computer, to use FK and IK offline for debugging

