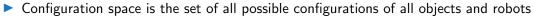


Robotics: Task and Motion Planning

Vladimír Petrík

vladimir.petrik@cvut.cz


13.11.2023

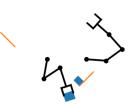
Motivation

- We know how to plan motion for a robot in robot's configuration space
 - manually define handle on object
 - computer grasp and pre-grasp for detected object's pose
 - plan motion to pre-grasp
 - interpolate to grasp, grasp
 - interpolate to pre-grasp
 - plan motion to pre-place, place, release, pre-place
- ▶ What if we have many handles? Many objects?
- Manipulation Task and Motion Planning (TAMP)
 - simultaneously plan task and motion solutions
 - task is the sequence of grasps and placements (discrete space)
 - motion is the sequence of robot configurations (continuous space)
 - Humanoid Path Planning (HPP) software approach

Configuration Space

- Multiple grippers connected to robots
- Environment surfaces that can be used for placing an object
- Multiple objects
 - multiple handles per object
 - multiple contact surfaces per object

$$\triangleright \mathcal{C} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \dots \times SE(3)^M$$


- $ightharpoonup N_i$ DoF of the *i*-th robot
- ► *M* number of objects
- ▶ however, not all configuration are feasible
- constraints are used to define feasible configurations

Constraints

- Object is placed or grasped, i.e. cannot fly
- Placement constraint
 - object lies on a surface
 - numerical constraints
 - object surface is placed on an environment surface
- Grasp constraint
 - object is grasped by a gripper
 - numerical constraint
 - ► handle frame equals gripper frame

Stav (state)

- State is a set of constraints
- Manifold of feasible configurations in the configuration space
- For example, one state can be defined by constraining both objects
 - ightharpoonup object O_1 is placed on the surface E_1 via object surface S_1
 - ightharpoonup object O_2 is grasped by the gripper G_1 via handle H_1
- How to sample configuration from a state?
 - ightharpoonup sample from the $\mathcal C$
 - geometric projection to satisfy all the constraints
 - numerical optimization (Newton-Raphson) to satisfy all the constraints

Sampling from states

Sample from $\ensuremath{\mathcal{C}}$

- ▶ Project to state:
 - O_1 placed on E_1 via
 - $igwedge O_2$ placed on E_2 via S_1

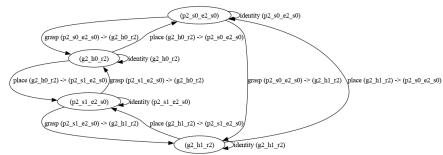
- Project to state:
 - $ightharpoonup O_1$ grasped by G_1 via H_1
 - $igwedge O_2$ placed on E_2 via S_1

Transitions

- ► Transition defines motion between two states
 - identity transition allows to move robot inside the state
 - place transition allows to move object from the gripper to the surface
 - grasp transition allows to move object from the surface to the gripper
- Sampling on transitions vs sampling on states
 - transition respect constraints from the given state
 - for example, identity on place state will not move object (sampling on state can move object)
 - grasp transition is specified to move via pre-grasp
 - place transition is specified to move via pre-place

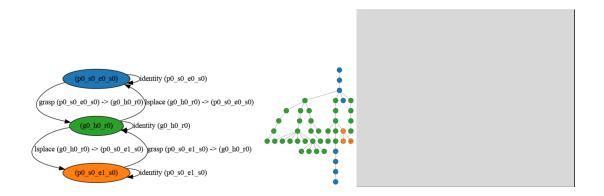
Interpolation on transition

► Interpolate between two configurations but respect constraints of the states/transition


Grasp

Place

Constraint graph


- Defines all possible transitions between existing states
- Example: single arm, one object

RRT on constraint graph

- ightharpoonup Random sampling $q_{\sf rand}$
 - sample random transition
 - select random existing configuration from the transition source
 - sample random configuration from the transition target reachable from beginning
- ightharpoonup Nearest neighbor q_{tree}
 - ightharpoonup node that is closest to q_{rand} via interpolation on the transition
- ► Local planner uses interpolation on transition

RRT on constraint graph

Conclusion

- Configuration space for TAMP is complex
 - discrete set of states
 - continuous motion
 - encoded by constraint graph that allow us to use RRT
- Usually not used in industry
 - task space sequence is hard-coded by programmers
 - only motion is found by motion planners (if cannot be hard-coded)
- ▶ How to avoid hard-coding? Video demonstration.

Laboratories

- Consultation on the final project
- Final project is now described on the course web page
- ► New interface for Bosch robot [optional]
 - fixed FK, IK
 - you can install it on your computer, to use FK and IK offline for debugging