CTU

CZECH TECHNICAL UNIVERSITY in Prague

Robotics: Dynamics of open chain

Vladimír Petrík

vladimir.petrik@cvut.cz
27.11.2023

Motivation

We studied kinematics of open chains

- Forward kinematics
- Inverse kinematics
- Planning of paths/trajectories

Dynamics of open chains

- Motion of the robot taking into account forces, torques, and gravity
- Motion described by the equation of motion
- Can be used to compute control of the robot
- It can answer the question when humanoid robot falls down

Equation of motion

- Describes the motion of the robot
- Differential equation of the second order

For robotics, equation of motion has the form $\boldsymbol{\tau}=M(\boldsymbol{q}) \ddot{\boldsymbol{q}}+h(\boldsymbol{q}, \dot{\boldsymbol{q}})$

- $\boldsymbol{\tau}$ - vector of joint forces/torques
- M - mass matrix
- h - vector of Coriolis, gravity and friction terms
- h is often in the form $h=C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}+g(\boldsymbol{q})$
- C - Coriolis matrix
- g - effect of gravity

Dynamics tasks

Forward dynamics

- Given $\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau}$ compute $\ddot{\boldsymbol{q}}$
- Why we need it?
- Used for simulation
- How the robot moves for given forces/torques
- $\ddot{\boldsymbol{q}}=M^{-1}(\boldsymbol{q})(\boldsymbol{\tau}-h(\boldsymbol{q}, \dot{\boldsymbol{q}}))$

Inverse dynamics

- Given $\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}$ compute $\boldsymbol{\tau}$
- Why we need it?
- Used for control
- What forces/torques are needed to move the robot in desired way
- $\boldsymbol{\tau}=M(\boldsymbol{q}) \ddot{\boldsymbol{q}}+h(\boldsymbol{q}, \dot{\boldsymbol{q}})$

Forward dynamics integration - simulation

Explicit Euler Integration

- $\dot{\boldsymbol{q}}_{t+1}=\dot{\boldsymbol{q}}_{t}+\ddot{\boldsymbol{q}}_{t} \Delta t$
- $\ddot{\boldsymbol{q}}_{t}=M^{-1}\left(\boldsymbol{q}_{t}\right)\left(\boldsymbol{\tau}_{t}-h\left(\boldsymbol{q}_{t}, \dot{\boldsymbol{q}}_{\boldsymbol{t}}\right)\right)$
$\rightarrow \Delta t$ - time step, e.g. 0.001 s (unstable for large time steps)
$\boldsymbol{q}_{t+1}=\boldsymbol{q}_{t}+\dot{\boldsymbol{q}}_{t} \Delta t$

Robotics: Dynamics of open chain
Vladimír Petrík

Equation of motion derivation

- Lagrangian formulation
- Kinetic energy
- Potential energy
- Elegant for simple structures
- Newton-Euler formulation
- Dynamic equation of rigid body
- Efficient recursive formulation for forward/inverse dynamics

Both formulations lead to the same equation of motion

Lagrangian formulation

- Generalized coordinates \boldsymbol{q}
- Generalized forces τ
- Lagrangian
$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}})-\mathcal{P}(\boldsymbol{q})$
- Kinetic energy $\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}})$
- Potential energy $\mathcal{P}(\boldsymbol{q})$
- Equation of motion
$\boldsymbol{\tau}=\frac{\mathrm{d}}{\mathrm{d} t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}}-\frac{\partial \mathcal{L}}{\partial \boldsymbol{q}}$
- Also called Euler-Lagrange equation with external forces
- Examples:
- Particle of mass moving vertically in gravitation field
- Planar robot arm

Simulation of PP

Robotics: Dynamics of open chain
Vladimír Petrík

Equation of Motion - RR

$$
\begin{aligned}
& \tau_{1}=\left(\mathfrak{m}_{1} L_{1}^{2}+\mathfrak{m}_{2}\left(L_{1}^{2}+2 L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right)\right) \ddot{\theta}_{1} \\
&+\mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) \ddot{\theta}_{2}-\mathfrak{m}_{2} L_{1} L_{2} \sin \theta_{2}\left(2 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right) \\
&+\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right) L_{1} g \cos \theta_{1}+\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right), \\
& \tau_{2}= \mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) \ddot{\theta}_{1}+\mathfrak{m}_{2} L_{2}^{2} \ddot{\theta}_{2}+\mathfrak{m}_{2} L_{1} L_{2} \dot{\theta}_{1}^{2} \sin \theta_{2} \\
&+\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right) . \\
& M(\theta)=\left[\begin{array}{cc}
\mathfrak{m}_{1} L_{1}^{2}+\mathfrak{m}_{2}\left(L_{1}^{2}+2 L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) & \mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) \\
\mathfrak{m}_{2}\left(L_{1} L_{2} \cos \theta_{2}+L_{2}^{2}\right) & \mathfrak{m}_{2} L_{2}^{2}
\end{array}\right], \\
& c(\theta, \dot{\theta})= {\left[\begin{array}{c}
-\mathfrak{m}_{2} L_{1} L_{2} \sin \theta_{2}\left(2 \dot{\theta}_{1} \dot{\theta}_{2}+\dot{\theta}_{2}^{2}\right) \\
\mathfrak{m}_{2} L_{1} L_{2} \dot{\theta}_{1}^{2} \sin \theta_{2}
\end{array}\right], } \\
& g(\theta)= {\left[\begin{array}{c}
\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right) L_{1} g \cos \theta_{1}+\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
\mathfrak{m}_{2} g L_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right], }
\end{aligned}
$$

Simulation of RR

Understanding mass matrix

- Kinetic energy
- Point mass $\frac{1}{2} m \dot{x}^{2}$
- Robot $\frac{1}{2} \dot{\boldsymbol{q}}^{\top} M(\boldsymbol{q}) \dot{\boldsymbol{q}}$

Mass

- Point mass m is positive
- $M(\boldsymbol{q})$ is symmetric positive definite matrix

Point mass in Cartesian coordinates

- Independent of direction of acceleration
- Acceleration is scalar multiplication of force

Mass matrix in generalized coordinates

- Effective mass depends on the acceleration direction
- Unit acceleration mapping to torques
- The same magnitude of acceleration can be achieved by different torques (depending on the direction)

End-effector effective mass

How massy would end-effector feel if we move it by hand? Depends on the direction of force.

- Kinetic energy must be constant: $\frac{1}{2} V^{\top} \Lambda(\boldsymbol{q}) V=\frac{1}{2} \dot{\boldsymbol{q}}^{\top} M(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- $\Lambda(\boldsymbol{q})$ effective mass of end-effector
- $V=(\dot{x}, \dot{y})^{\top}$ velocity of end-effector
- Jacobian $V=J(\boldsymbol{q}) \dot{\boldsymbol{q}}$
- $V^{\top} \Lambda(\boldsymbol{q}) V=\left(J^{-1} V\right)^{\top} M(\boldsymbol{q})\left(J^{-1} V\right)^{\top}=V^{\top}\left(J^{-\top} M(\boldsymbol{q}) J^{-1}\right) V$
- End-effector mass matrix: $\Lambda(\boldsymbol{q})=J^{-\top}(\boldsymbol{q}) M(\boldsymbol{q}) J^{-1}(\boldsymbol{q})$

Constrained dynamics

Robot subject to a set of k velocity constraints

- e.g. closed kinematics chain
- writing with a pen (constant height)
- $A(\boldsymbol{q}) \dot{\boldsymbol{q}}=0, A \in \mathbb{R}^{k \times n}$

Equation of motion

- $\boldsymbol{\tau}=M(\boldsymbol{q}) \ddot{\boldsymbol{q}}+h(\boldsymbol{q}, \dot{\boldsymbol{q}})+A^{\top}(\boldsymbol{q}) \boldsymbol{\lambda}, \quad$ s.t. $A(\boldsymbol{q}) \dot{\boldsymbol{q}}=0$
- $\boldsymbol{\lambda}$ - vector of Lagrange multipliers
- $A^{\top}(\boldsymbol{q}) \boldsymbol{\lambda}$ - force applied against constraints expressed as joint forces/torques
- Lambda can be computed analytically:

$$
\boldsymbol{\lambda}=\left(A M^{-1} A^{\top}\right)^{-1}\left(A M^{-1}(\boldsymbol{\tau}-h)+\dot{A} \dot{\boldsymbol{q}}\right)
$$

Constrained dynamics tasks

Forward dynamics

- first compute $\boldsymbol{\lambda}$
- compute $\ddot{\boldsymbol{q}}$

Inverse dynamics

- compute $\boldsymbol{\tau}$ from given $\boldsymbol{\lambda}$ and $\ddot{\boldsymbol{q}}$
- $\boldsymbol{\lambda}$ defines force against constraints
- if constraint is in the end-effector space: $J^{\top} \boldsymbol{f}=A^{\top} \boldsymbol{\lambda}$
- e.g. how much pushing against the table with \boldsymbol{f}_{d}
- $\boldsymbol{\lambda}=\left(J^{-\top} A^{\top}\right)^{\dagger} \boldsymbol{f}_{d}$

Summary

Dynamics of open chains

- Equation of motion
- Lagrangian formulation
- Newton-Euler formulation
- Forward dynamics
- Inverse dynamics
- Constrained dynamicsRobotics: Dynamics of open chainVladimír Petrík15 / 15

