

Robotics: Dynamics of open chain

Vladimír Petrík vladimir.petrik@cvut.cz 27.11.2023

Motivation

- taylacea/orreal plans and to above
- ► We studied kinematics of open chains
 - Forward kinematics
 - Inverse kinematics
 - ▶ Planning of paths/trajectories
- Dynamics of open chains
 - Motion of the robot taking into account forces, torques, and gravity
 - ▶ Motion described by the equation of motion
 - ► Can be used to compute control of the robot
 - It can answer the question when humanoid robot falls down

Equation of motion

- Describes the motion of the robot
- ▶ Differential equation of the second order
- For robotics, equation of motion has the form $\tau = M(q)\ddot{q} + h(q,\dot{q})$
 - ightharpoonup vector of joint forces/torques
 - ▶ *M* mass matrix
 - ▶ *h* vector of Coriolis, gravity and friction terms
 - lacksquare h is often in the form $h = C(q, \dot{q})\dot{q} + g(q)$
 - ightharpoonup C Coriolis matrix
 - g effect of gravity

Dynamics tasks

- Forward dynamics
 - ightharpoonup Given q, \dot{q} , au compute \ddot{q}
 - ▶ Why we need it?
 - Used for simulation
 - ► How the robot moves for given forces/torques
 - $\qquad \qquad \dot{\pmb{q}} = M^{-1}(\pmb{q})(\pmb{\tau} h(\pmb{q}, \dot{\pmb{q}}))$
- ► Inverse dynamics
 - ightharpoonup Given q, \dot{q} , \ddot{q} compute au
 - ▶ Why we need it?
 - Used for control
 - ▶ What forces/torques are needed to move the robot in desired way
 - $\tau = M(q)\ddot{q} + h(q, \dot{q})$

Robotics: Dynamics of open chain

Forward dynamics integration - simulation

- Explicit Euler Integration
- $\dot{\boldsymbol{q}}_{t+1} = \dot{\boldsymbol{q}}_t + \ddot{\boldsymbol{q}}_t \Delta t$
 - $\ddot{\boldsymbol{q}_t} = M^{-1}(\boldsymbol{q}_t)(\boldsymbol{\tau}_t h(\boldsymbol{q}_t, \dot{\boldsymbol{q}_t}))$
 - $ightharpoonup \Delta t$ time step, e.g. 0.001 s (unstable for large time steps)
- $\mathbf{q}_{t+1} = \mathbf{q}_t + \dot{\mathbf{q}}_t \Delta t$

Robotics: Dynamics of open chain Vladimír Petrík

Equation of motion derivation

- ► Lagrangian formulation
 - ► Kinetic energy
 - Potential energy
 - ► Elegant for simple structures
- Newton-Euler formulation
 - Dynamic equation of rigid body
 - ► Efficient recursive formulation for forward/inverse dynamics
- ▶ Both formulations lead to the same equation of motion

Lagrangian formulation

- ightharpoonup Generalized coordinates q
- ightharpoonup Generalized forces au
- ► Lagrangian

$$\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - \mathcal{P}(\boldsymbol{q})$$

- ightharpoonup Kinetic energy $\mathcal{K}(m{q},\dot{m{q}})$
- Potential energy $\mathcal{P}(q)$
- ► Equation of motion

$$oldsymbol{ au} = rac{\mathrm{d}}{\mathrm{d}t} rac{\partial \mathcal{L}}{\partial oldsymbol{q}} - rac{\partial \mathcal{L}}{\partial oldsymbol{q}}$$

- ► Also called Euler-Lagrange equation with external forces
- Examples:
 - ▶ Particle of mass moving vertically in gravitation field
 - ► Planar robot arm

Simulation of PP

$$\boldsymbol{ au} = egin{pmatrix} 0 & 0 \end{pmatrix}^{ op}$$

$$oldsymbol{ au} = egin{pmatrix} 0 & -100 y_G \end{pmatrix}^{ op}$$

Equation of Motion - RR

$$\begin{split} \tau_1 &= & \left(\mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) \right) \ddot{\theta}_1 \\ &+ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_2 - \mathfrak{m}_2 L_1 L_2 \sin \theta_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \\ &+ (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos(\theta_1 + \theta_2), \\ \tau_2 &= & \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_1 + \mathfrak{m}_2 L_2^2 \ddot{\theta}_2 + \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \\ &+ \mathfrak{m}_2 g L_2 \cos(\theta_1 + \theta_2). \end{split}$$

$$M(\theta) = \left[\begin{array}{c} \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) & \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \\ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) & \mathfrak{m}_2 L_2^2 \\ \end{array} \right], \\ c(\theta, \dot{\theta}) = \left[\begin{array}{c} -\mathfrak{m}_2 L_1 L_2 \sin \theta_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \\ \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \end{array} \right], \\ g(\theta) = \left[\begin{array}{c} (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos(\theta_1 + \theta_2) \\ \mathfrak{m}_2 g L_2 \cos(\theta_1 + \theta_2) \end{array} \right], \end{split}$$

Simulation of RR

$$\boldsymbol{ au} = egin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{ op}$$

$$\boldsymbol{ au} = egin{pmatrix} 10 & 10 & 10 \end{pmatrix}^{ op}$$

Understanding mass matrix

- Kinetic energy
 - Point mass $\frac{1}{2}m\dot{x}^2$
 - ► Robot $\frac{1}{2}\dot{\boldsymbol{q}}^{\top}\tilde{M}(\boldsymbol{q})\dot{\boldsymbol{q}}$

- ightharpoonup Point mass m is positive
- $lackbox{N}(q)$ is symmetric positive definite matrix
- ▶ Point mass in Cartesian coordinates
 - ► Independent of direction of acceleration
 - ► Acceleration is scalar multiplication of force
- ► Mass matrix in generalized coordinates
 - ► Effective mass depends on the acceleration direction
 - Unit acceleration mapping to torques
 - ► The same magnitude of acceleration can be achieved by different torques (depending on the direction)

Robotics: Dynamics of open chain

End-effector effective mass

- ▶ How massy would end-effector feel if we move it by hand? Depends on the direction of force.
 - ▶ Kinetic energy must be constant: $\frac{1}{2}V^{\top}\Lambda(\boldsymbol{q})V = \frac{1}{2}\dot{\boldsymbol{q}}^{\top}M(\boldsymbol{q})\dot{\boldsymbol{q}}$
 - lacksquare $\Lambda(q)$ effective mass of end-effector
 - $V = (\dot{x}, \dot{y})^{\top}$ velocity of end-effector
 - ightharpoonup Jacobian $V = J(q)\dot{q}$
 - $V^{\top} \Lambda(\mathbf{q}) V = (J^{-1}V)^{\top} M(\mathbf{q}) (J^{-1}V)^{\top} = V^{\top} (J^{-\top} M(\mathbf{q}) J^{-1}) V$
 - ► End-effector mass matrix: $\Lambda(q) = J^{-\top}(q)M(q)J^{-1}(q)$

Robotics: Dynamics of open chain

Constrained dynamics

- ightharpoonup Robot subject to a set of k velocity constraints
 - e.g. closed kinematics chain
 - writing with a pen (constant height)
 - $A(q)\dot{q} = 0, A \in \mathbb{R}^{k \times n}$
- ► Equation of motion
 - $au = M(q)\ddot{q} + h(q,\dot{q}) + A^{\top}(q)\lambda$, s.t. $A(q)\dot{q} = 0$
 - \triangleright λ vector of Lagrange multipliers
 - $ightharpoonup A^{\top}(q)\lambda$ force applied against constraints expressed as joint forces/torques
 - Lambda can be computed analytically:

$$\boldsymbol{\lambda} = (AM^{-1}A^{\top})^{-1}(AM^{-1}(\boldsymbol{\tau} - h) + \dot{A}\dot{\boldsymbol{q}})$$

Robotics: Dynamics of open chain

Constrained dynamics tasks

- Forward dynamics
 - ightharpoonup first compute λ
 - ightharpoonup compute \ddot{q}
- ► Inverse dynamics
 - ightharpoonup compute au from given λ and \ddot{q}
 - \triangleright λ defines force against constraints
 - if constraint is in the end-effector space: $J^{\top} f = A^{\top} \lambda$
 - e.g. how much pushing against the table with f_d $\lambda = (J^{-\top}A^{\top})^{\dagger} f_d$

Robotics: Dynamics of open chain Vladimír Petrík

Summary

- Dynamics of open chains
- ► Equation of motion
 - Lagrangian formulation
 - ► Newton-Euler formulation
- ► Forward dynamics
- ▶ Inverse dynamics
- Constrained dynamics

