

Robotics: Introduction to AI in robotics

Vladimír Petrík

vladimir.petrik@cvut.cz

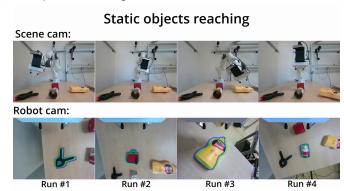
18.12.2023

Motivation

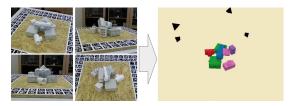
- ▶ You know how to control robot to reach the target pose (SE3)
- ▶ Where to get the pose for the given task?

Motivation

- ► You know how to control robot to reach the target pose (SE3)
- ▶ Where to get the pose for the given task? **Vision**



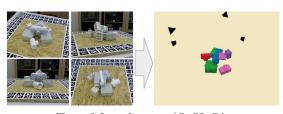
6D pose estimation



 $T_{CO}, M = f_{\mathsf{estimate}}(I, K, \mathcal{D})$

- ► *I* image
- K camera matrix
- $\triangleright \mathcal{D}$ database of meshes
- $ightharpoonup M \in \mathcal{D}$ mesh of the object

6D pose estimation



 $T_{CO}, M = f_{\mathsf{estimate}}(I, K, \mathcal{D})$

- ► *I* image
- K camera matrix
- $\triangleright \mathcal{D}$ database of meshes
- ▶ $M \in \mathcal{D}$ mesh of the object

6D pose tracking

$$T_{CO}^{i+1} = f_{\mathsf{track}}(I, K, M, T_{CO}^i)$$

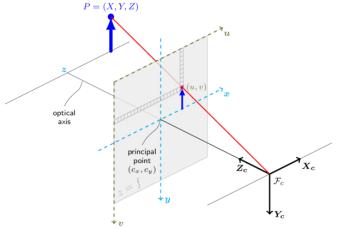
- ► I image
- K camera matrix
- ► M mesh

Why is 6D pose estimation difficult?

 $^{^{1}}$ https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

Why is 6D pose estimation difficult?

▶ Projection, pinhole camera model¹



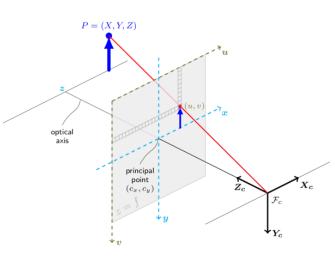
¹https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

Why is 6D pose estimation difficult?

- Projection, pinhole camera model¹
- - ightharpoonup u, v pixel coordinates
 - $ightharpoonup x_c$ 3D point in camera frame
 - ► *K* camera matrix

$$K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$

With projection we are loosing information about depth



¹https://docs.opencv.org/4.x/d9/d0c/group_calib3d.html

6D pose estimation pipeline

Object detection in image

Coarse pose estimation

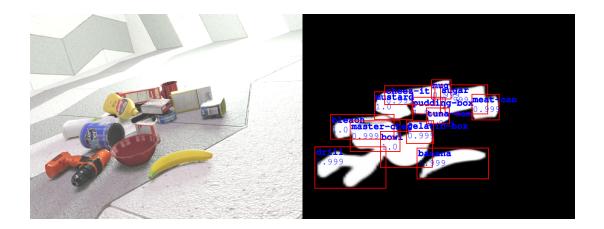
Pose refinement

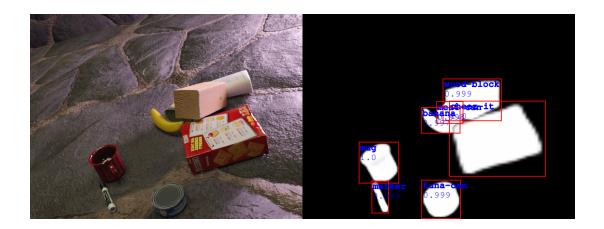
Object detection

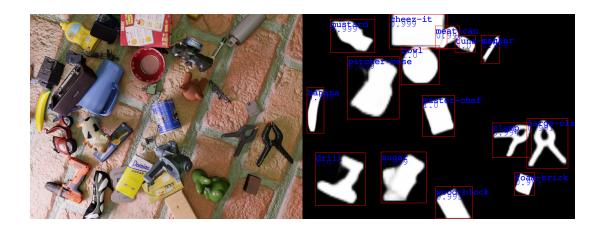
- Goal: detect object in image
 - mask
 - bounding box
 - object instance id
 - confidence of prediction

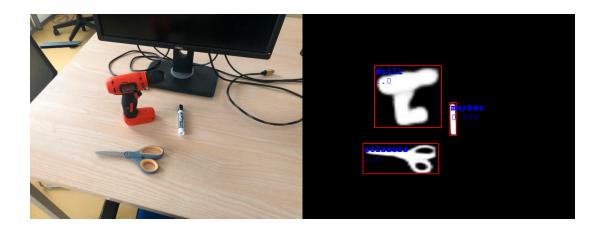
Object detection

- Goal: detect object in image
 - mask
 - bounding box
 - object instance id
 - confidence of prediction
- Neural network Mask R-CNN
 - needs good training data
 - annotated images
 - synthetic images





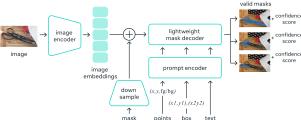




Object detection without retraining

- Segment Anything Model (SAM)
 - segment any object, in any image, with a single click
 - dataset of 10M images, 1B masks

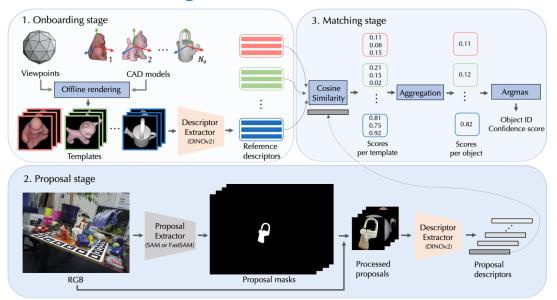
Universal segmentation model



SAM results

SAM results

Mesh model from segmentation mask - CNOS

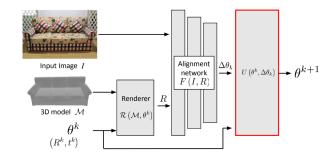


CosyPose

Consistent multi-view multi-object 6D pose estimation

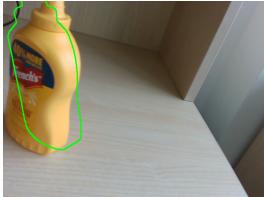
Coarse pose estimation

- Input: image crop and mesh model²
- ► Goal: estimate 6D pose
- Approach:
 - render and compare strategy
 - neural network
 - initial position is estimated from camera matrix
 - initial orientation is identity
- Training
 - synthetic and real data
 - 10 hours on 32 GPUs



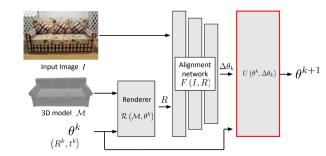
²Image based on: https://arxiv.org/pdf/2204.05145.pdf

Coarse pose estimation results



Refiner

- ► The same render-and-compare strategy
- Network learns to predict small corrections
- Evaluated iteratively
- Another 10 hours on 32 GPUs



Refiner results

Refiner results

BOP challenge

- ▶ BOP: Benchmark for 6D Object Pose Estimation
- Main benchmark/competition for 6D pose estimation

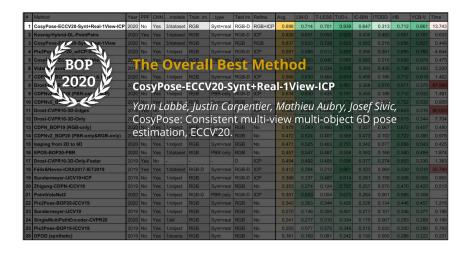
BOP challenge

- ▶ BOP: Benchmark for 6D Object Pose Estimation
- Main benchmark/competition for 6D pose estimation
- ► Tasks on seen objects
 - ▶ Model-based 2D detection/segmentation of seen objects [new in 2022]
 - ► Model-based 6D localization of seen objects

BOP challenge

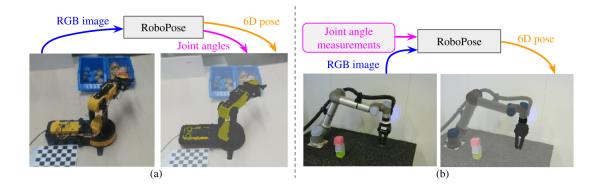
- ▶ BOP: Benchmark for 6D Object Pose Estimation
- Main benchmark/competition for 6D pose estimation
- ► Tasks on seen objects
 - ▶ Model-based 2D detection/segmentation of seen objects [new in 2022]
 - ► Model-based 6D localization of seen objects
- ► Tasks on unseen objects [new in 2023]
 - Model-based 2D detection/segmentation of unseen objects
 - Model-based 6D localization of unseen objects

CosyPose at BOP challenge



CosyPose variants: FocalPose, FocalPose++

CosyPose variants: RoboPose



CosyPose variants: RoboPose

CosyPose limitations

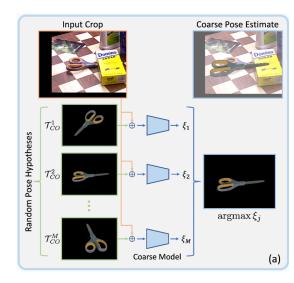
- Training time
- ► For each dataset
 - ▶ 10 hours on 32 GPUs for coarse estimator
 - ▶ 10 hours on 32 GPUs for refiner
- ► Coarse pose estimation often not accurate enough for refinement

MegaPose

6D Pose Estimation of Novel Objects via Render & Compare

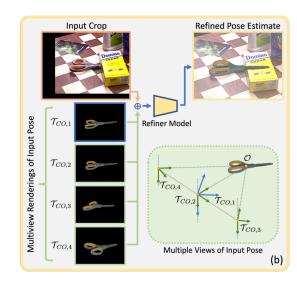
MegaPose - coarse estimation

- Re-casted estimation into classification
- ► Poses sampled randomly [original]
- Poses uniformly distributed [new]
- Allows multi-hypothesis evaluation



MegaPose - refiner

- ► Multi-view rendering
- ► Render and compare
- Iterative refinement



MegaPose - training data

- Generalization to unseen object achieved by big training dataset
 - only synthetic dataset
 - thousands of objects
 - 2 millions of images
- Training
 - ▶ 100 hours on 32 GPUs
 - trained only once, models are available

MegaPose - results

HappyPose

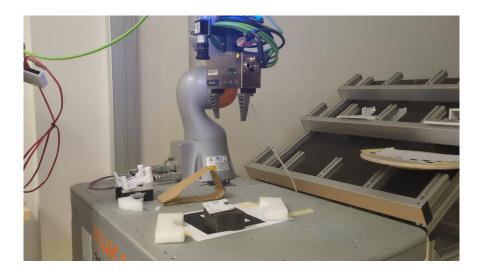
Open-source toolbox for 6D pose estimation

HappyPose

- Developed in AGIMUS project (https://github.com/agimus-project/happypose)
- Re-implements CosyPose and MegaPose
- Packaging, testing, documentation
- https://github.com/agimus-project/winter-school-2023/

Applications

PCB manipulation based on the estimated pose



euROBIN taskboard pose estimation

Model-based object pose tracking

Object pose tracking

Initial pose

Converged

Object pose tracking

Assumptions: object detected, matched with model, initial pose given

Keypoint matching approach

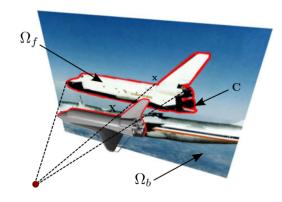
- Model
 - ▶ 3D points on mesh
 - descriptors of points
- Method
 - ▶ 3D-2D matching
 - minimize reprojection error
- Efficient and robust for rich textures

MegaPose as tracking?

MegaPose as tracking?

Region based tracking

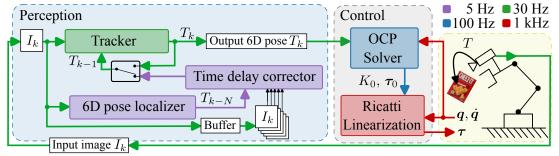
- Mesh model as input
- Probabilistic silhouette alignment (Newton's method)
- Assumes foreground and background colors sufficiently different
- ► Robust to occlusion, efficient



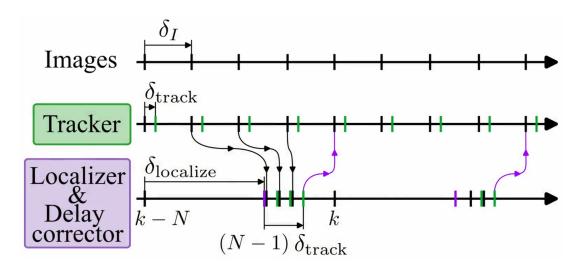
Region based tracker

Object localization and tracking

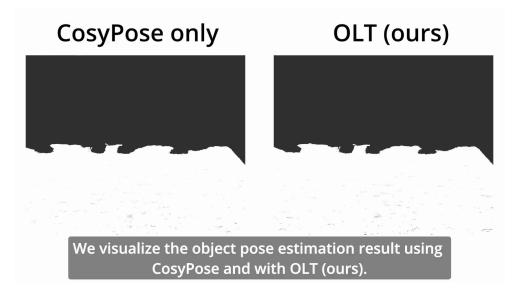
- Combines slow localization and fast tracker
- ► Goal: fast feedback for control



OLT timeline



OLT delay



Control

Optimal control solver

$$\arg \min_{\substack{\boldsymbol{u}_0, \dots, \boldsymbol{u}_{M-1} \\ \boldsymbol{x}_1, \dots, \boldsymbol{x}_M}} \sum_{i=0}^{M-1} l_i(\boldsymbol{x}_i, \boldsymbol{u}_i) + l_M(\boldsymbol{x}_M),
\text{s.t.} \quad \boldsymbol{x}_{i+1} = f(\boldsymbol{x}_i, \boldsymbol{u}_i), \ \forall i \in \{0, \dots, M-1\},
\boldsymbol{x}_0 = \hat{\boldsymbol{x}},$$
(1)

Control

Optimal control solver

$$\arg \min_{\substack{\boldsymbol{u}_0, \dots, \boldsymbol{u}_{M-1} \\ \boldsymbol{x}_1, \dots, \boldsymbol{x}_M}} \sum_{i=0}^{M-1} l_i(\boldsymbol{x}_i, \boldsymbol{u}_i) + l_M(\boldsymbol{x}_M),
\text{s.t.} \quad \boldsymbol{x}_{i+1} = f(\boldsymbol{x}_i, \boldsymbol{u}_i), \ \forall i \in \{0, \dots, M-1\},
\boldsymbol{x}_0 = \hat{\boldsymbol{x}},$$
(1)

Ricatti linearization

Vladimír Petrík

$$\tau(\mathbf{x}) = \tau_0 + K_0(\mathbf{x} - \mathbf{x}_0) \tag{2}$$

Control

Optimal control solver

$$\arg \min_{\substack{\boldsymbol{u}_0, \dots, \boldsymbol{u}_{M-1} \\ \boldsymbol{x}_1, \dots, \boldsymbol{x}_M}} \sum_{i=0}^{M-1} l_i(\boldsymbol{x}_i, \boldsymbol{u}_i) + l_M(\boldsymbol{x}_M),
\text{s.t.} \quad \boldsymbol{x}_{i+1} = f(\boldsymbol{x}_i, \boldsymbol{u}_i), \ \forall i \in \{0, \dots, M-1\},
\boldsymbol{x}_0 = \hat{\boldsymbol{x}},$$
(1)

Ricatti linearization

Vladimír Petrík

$$\tau(\mathbf{x}) = \tau_0 + K_0(\mathbf{x} - \mathbf{x}_0) \tag{2}$$

Costs for optimal control

► Tracking cost

$$\left\| \log \left(\left(T_{\mathsf{BC}}(\boldsymbol{q}_k) T_k \right)^{-1} T_{\mathsf{BC}}(\boldsymbol{q}) T_{\mathsf{ref}} \right) \right\|^2 \tag{3}$$

Costs for optimal control

Tracking cost

$$\left\| \log \left(\left(T_{\mathsf{BC}}(\boldsymbol{q}_k) T_k \right)^{-1} T_{\mathsf{BC}}(\boldsymbol{q}) T_{\mathsf{ref}} \right) \right\|^2 \tag{3}$$

is solution unique?

Costs for optimal control

Tracking cost

$$\left\| \log \left(\left(T_{\mathsf{BC}}(\boldsymbol{q}_k) T_k \right)^{-1} T_{\mathsf{BC}}(\boldsymbol{q}) T_{\mathsf{ref}} \right) \right\|^2 \tag{3}$$

- ▶ is solution unique?
- Regularizations:

$$(\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}})^{\top} Q_x (\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}}) \tag{4}$$

$$(\boldsymbol{u} - \boldsymbol{u}_{\mathsf{rest}}(\boldsymbol{x}))^{\top} Q_u (\boldsymbol{u} - \boldsymbol{u}_{\mathsf{rest}}(\boldsymbol{x})) \tag{5}$$

OLT with control for tracking

Static objects reaching

Scene cam:

Robot cam:

Run #1 Run #2 Run #3 Run #4

Summary

- ▶ 6D pose estimation
 - Object detection
 - CosyPose
 - MegaPose
 - FocalPose
 - RoboPose
- ▶ 6D pose tracking
- Object localization and tracking for control

Final work

- No consultation on Tuesday
- ▶ (Soft) Deadline for submission is 14.01.2024
 - ► -1p every 72h
- ► Necessary to evaluate before the exam