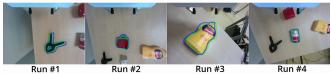


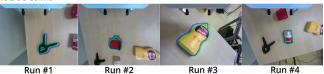
Robotics: Introduction to AI in robotics

Vladimír Petrík vladimir.petrik@cvut.cz 18.12.2023


Motivation

- ► You know how to control robot to reach the target pose (SE3)
- ▶ Where to get the pose for the given task? Vision

Robot cam:


Static objects reaching

Scene cam:

Vladimír PetrRobot cam:

Run #1 Run #3 2 / 47

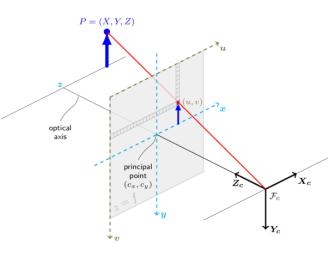
6D pose estimation

 $T_{CO}, M = f_{\mathsf{estimate}}(I, K, \mathcal{D})$

- ightharpoonup I image
- ▶ K camera matrix
- $\triangleright \mathcal{D}$ database of meshes
- $ightharpoonup M\in \mathcal{D}$ mesh of the object

6D pose tracking

$$T_{CO}^{i+1} = f_{\mathsf{track}}(I, K, M, T_{CO}^i)$$


- ightharpoonup I image
- ▶ K camera matrix
- ightharpoonup M mesh

Why is 6D pose estimation difficult?

- ► Projection, pinhole camera model¹
- - ightharpoonup u, v pixel coordinates
 - $ightharpoonup x_c$ 3D point in camera frame
 - ► *K* camera matrix

$$K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$

With projection we are loosing information about depth

¹https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

Robotics: Introduction to AI in robotics

Vladimír Petrík

6D pose estimation pipeline

Object detection in image

Coarse pose estimation

Pose refinement

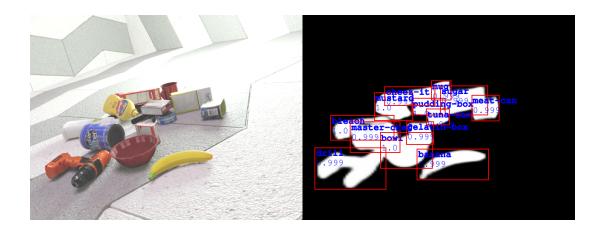
Robotics: Introduction to AI in robotics
Vladimír Petrík

5 / 47

Object detection

Object detection

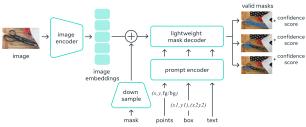
- ► Goal: detect object in image
 - mask
 - bounding box
 - object instance id
 - confidence of prediction
- ► Neural network Mask R-CNN
 - ► needs **good** training data
 - annotated images
 - synthetic images



Robotics: Introduction to AI in robotics

Vladimír Petrík

Trained Mask R-CNN results



Object detection without retraining

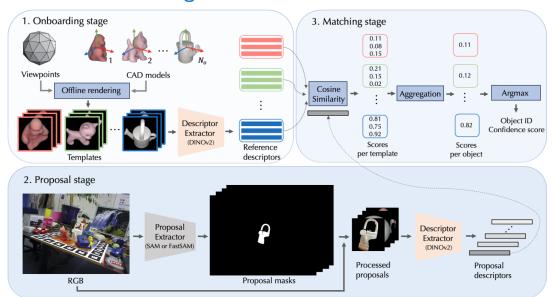
- Segment Anything Model (SAM)
 - segment any object, in any image, with a single click
 - dataset of 10M images, 1B masks

Universal segmentation model

Robotics: Introduction to AI in robotics

9 / 47

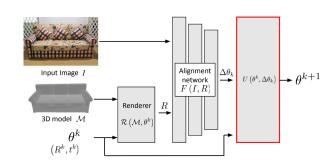
SAM results



SAM results

Mesh model from segmentation mask - CNOS

Robotics: Introduction to AI in robotics Vladimír Petrík


12 / 47

CosyPose

Consistent multi-view multi-object 6D pose estimation

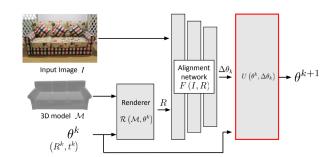
Coarse pose estimation

- ▶ Input: image crop and mesh model²
- ► Goal: estimate 6D pose
- ► Approach:
 - render and compare strategy
 - neural network
 - initial position is estimated from camera matrix
 - initial orientation is identity
- ► Training
 - synthetic and real data
 - ▶ 10 hours on 32 GPUs

²Image based on: https://arxiv.org/pdf/2204.05145.pdf

Robotics: Introduction to AI in robotics Vladimír Petrík

Coarse pose estimation results



Refiner

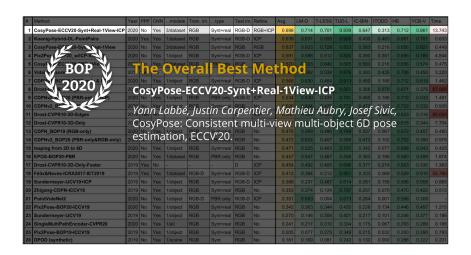
- ► The same render-and-compare strategy
- Network learns to predict small corrections
- Evaluated iteratively
- ► Another 10 hours on 32 GPUs

Refiner results

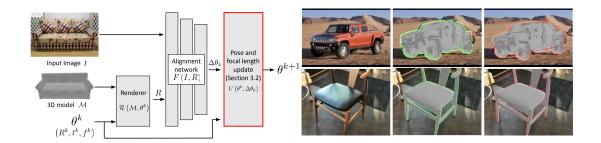
Refiner results

BOP challenge

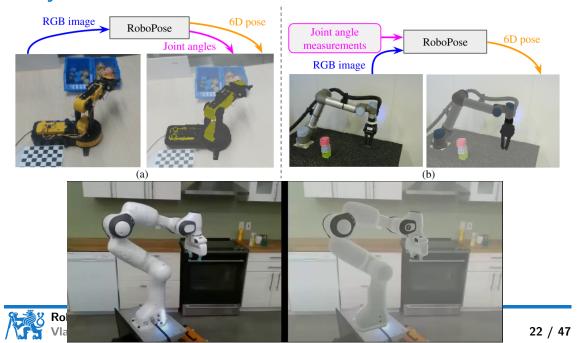
- ▶ BOP: Benchmark for 6D Object Pose Estimation
- ► Main benchmark/competition for 6D pose estimation
- Tasks on seen objects
 - ▶ Model-based 2D detection/segmentation of seen objects [new in 2022]
 - ► Model-based 6D localization of seen objects
- ► Tasks on unseen objects [new in 2023]
 - ► Model-based 2D detection/segmentation of unseen objects
 - ► Model-based 6D localization of unseen objects



Robotics: Introduction to AI in robotics Vladimír Petrík


19 / 47

CosyPose at BOP challenge

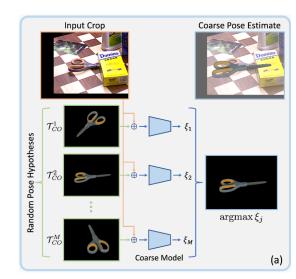


CosyPose variants: FocalPose, FocalPose++

CosyPose variants: RoboPose

CosyPose limitations

- ► Training time
- ► For each dataset
 - ▶ 10 hours on 32 GPUs for coarse estimator
 - ▶ 10 hours on 32 GPUs for refiner
- ► Coarse pose estimation often not accurate enough for refinement

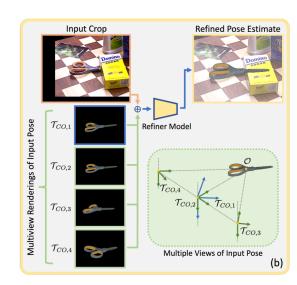


MegaPose

6D Pose Estimation of Novel Objects via Render & Compare

MegaPose - coarse estimation

- ▶ Re-casted estimation into classification
- Poses sampled randomly [original]
- ► Poses uniformly distributed [new]
- Allows multi-hypothesis evaluation



Robotics: Introduction to AI in robotics Vladimír Petrík

25 / 47

MegaPose - refiner

- Multi-view rendering
- Render and compare
- ► Iterative refinement

Robotics: Introduction to AI in robotics

Vladimír Petrík

MegaPose - training data

- Generalization to unseen object achieved by big training dataset
 - only synthetic dataset
 - thousands of objects
 - ▶ 2 millions of images
- ▶ Training
 - ▶ 100 hours on 32 GPUs
 - trained only once, models are available

Robotics: Introduction to AI in robotics
Vladimír Petrík

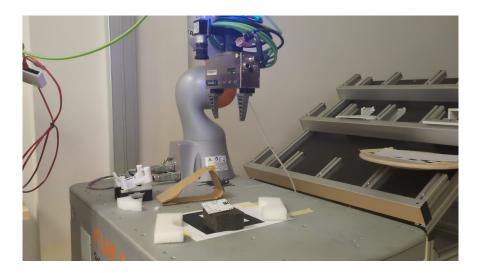
MegaPose - results

HappyPose

Open-source toolbox for 6D pose estimation

HappyPose

- Developed in AGIMUS project (https://github.com/agimus-project/happypose)
- ► Re-implements CosyPose and MegaPose
- ► Packaging, testing, documentation
- https://github.com/agimus-project/winter-school-2023/



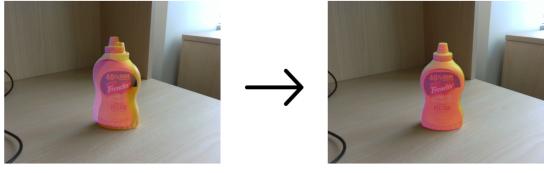
Robotics: Introduction to AI in robotics

Vladimír Petrík

Applications

PCB manipulation based on the estimated pose

euROBIN taskboard pose estimation



33 / 47

Model-based object pose tracking

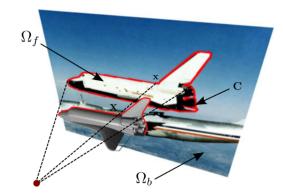
Object pose tracking

Initial pose Converged

Assumptions: object detected, matched with model, initial pose given

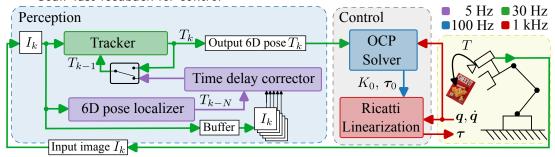
Keypoint matching approach

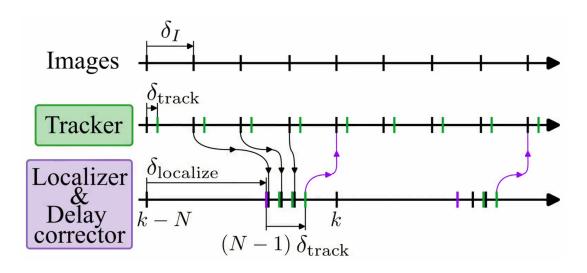
- ► Model
 - ▶ 3D points on mesh
 - descriptors of points
- Method
 - ▶ 3D-2D matching
 - minimize reprojection error
- ▶ Efficient and robust for rich textures


MegaPose as tracking?

Region based tracking

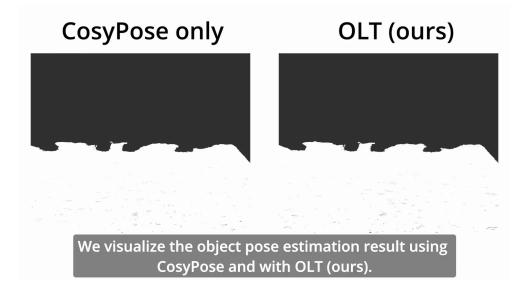
- Mesh model as input
- Probabilistic silhouette alignment (Newton's method)
- Assumes foreground and background colors sufficiently different
- ► Robust to occlusion, efficient


Region based tracker


Object localization and tracking

- Combines slow localization and fast tracker
- ► Goal: fast feedback for control

OLT timeline



Robotics: Introduction to AI in robotics

Vladimír Petrík

OLT delay

Robotics: Introduction to AI in robotics Vladimír Petrík

nír Petrík 42 / 47

Control

Optimal control solver

$$\arg \min_{\substack{\boldsymbol{u}_{0}, \dots, \boldsymbol{u}_{M-1} \\ \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{M}}} \sum_{i=0}^{M-1} l_{i}(\boldsymbol{x}_{i}, \boldsymbol{u}_{i}) + l_{M}(\boldsymbol{x}_{M}),$$
s.t. $\boldsymbol{x}_{i+1} = f(\boldsymbol{x}_{i}, \boldsymbol{u}_{i}), \ \forall i \in \{0, \dots, M-1\},$

$$\boldsymbol{x}_{0} = \hat{\boldsymbol{x}},$$
(1)

Ricatti linearization

$$\tau(x) = \tau_0 + K_0(x - x_0) \tag{2}$$

43 / 47

Costs for optimal control

► Tracking cost

$$\left\| \log \left(\left(T_{\mathsf{BC}}(\boldsymbol{q}_k) T_k \right)^{-1} T_{\mathsf{BC}}(\boldsymbol{q}) T_{\mathsf{ref}} \right) \right\|^2 \tag{3}$$

- is solution unique?
- ► Regularizations:

$$(\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}})^{\top} Q_x (\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}}) \tag{4}$$

$$(\boldsymbol{u} - \boldsymbol{u}_{\mathsf{rest}}(\boldsymbol{x}))^{\top} Q_u (\boldsymbol{u} - \boldsymbol{u}_{\mathsf{rest}}(\boldsymbol{x}))$$
 (5)

OLT with control for tracking

Static objects reaching

Scene cam:

Robot cam:

Run #1 Run #2 Run #3 Run #4

Summary

- ▶ 6D pose estimation
 - ► Object detection
 - CosyPose
 - MegaPose
 - ► FocalPose
 - RoboPose
- ▶ 6D pose tracking
- Object localization and tracking for control

Final work

- ► No consultation on Tuesday
- ▶ (Soft) Deadline for submission is 14.01.2024
 - ► -1p every 72h
- ▶ Necessary to evaluate before the exam

