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Optimal control - Model Predictive Control

▶ Find optimal control sequence u0,u1, . . . ,uT to minimize cost function J

▶ u∗ = argmin
u0,...,uT−1

J(x0, . . . ,xT ,u0, . . . ,uT ) s.t. xt+1 = f(xt,ut)

▶ xt is state of the system at time t
▶ u is control (torque, velocity, . . . )
▶ xt+1 = f(xt,ut) is dynamics/simulation of the system

▶ Cost function:

▶ J =
T−1∑
t=0

l(xt,ut) + lT (xT )

▶ l is cost function at time t
▶ lT is terminal cost function
▶ T is time horizon

▶ Use numerical optimization to solve the minimization problem
▶ dynamics (f) and costs (l, lT ) needs to be differentiable
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MPC in practical application

▶ Robot controlled at 100Hz

▶ For each control step, MPC is solved
▶ find sequence of control that optimize cost function
▶ fixed time horizon (e.g. 0.5 s)

▶ Apply first control from the sequence

▶ Repeat

▶ Why not applying all controls from the sequence?

▶ What if we do not have gradient of dynamics/costs?
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Reinforcement learning

Environment

Agent

Ac
tio

n

Interpreter

Reward

State

▶ Modeled as Markov Decision Process

▶ Agent interacts with environment

▶ Agent receives reward for each action/state

▶ Goal is to find policy that maximizes reward in time
▶ Stochastic policy: a ∼ πθ(s)

▶ a is action (e.g. torque)
▶ s is state of the system (e.g. joint angles and velocities, or image)
▶ πθ is policy parameterized by θ

▶ Instantaneous reward: r(s,a)

▶ Expected return of the policy: R = Eat∼πθ(st) [
∑

t r(st,at)] s.t. st+1 ∼ f(st,at)

▶ Goal: argmax
θ

R

▶ Compare to MPC: argmin
u1,...,uT

J s.t. xt+1 = f(xt,ut)



Robotics: Introduction to AI in robotics
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Policy gradient

▶ Policy πθ is parameterized by θ

▶ Is used to sample action a given state s: a ∼ πθ(s)

▶ Gradient descent algorithm: θt+1 = θt + α∇θR(πθ)
▶ θ parameterizes policy πθ

▶ α is learning rate
▶ ∇θR(πθ) = Eτ∼πθ

[
∑

t ∇θ log πθ(st)r(st,at)]
▶ expectation over trajectories τ sampled by following policy πθ

▶ in practise expectation is approximated by sampling a lot of trajectories (millions)
▶ why we need stochastic policy?

▶ Can we apply millions of trajectories to real robot?
▶ We need fast and accurate simulation of robots

▶ Gazebo
▶ NVIDIA Isaac Sim
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Example of RL
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Reward shaping
▶ Finding solution to RL problem is hard

▶ sparse reward
▶ local minima
▶ long training time

▶ Reward shaping
▶ add additional reward to the original reward
▶ additional reward is designed to guide learning and avoid local minima
▶ engineering work

▶ Is there a better solution? Learning from demonstration.
▶ Example from high-jump (Fosbury flop - 1968 gold medal)
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Reward shaping
▶ Finding solution to RL problem is hard

▶ sparse reward
▶ local minima
▶ long training time

▶ Reward shaping
▶ add additional reward to the original reward
▶ additional reward is designed to guide learning and avoid local minima
▶ engineering work

▶ Is there a better solution? Learning from demonstration.
▶ Example from high-jump (Fosbury flop - 1968 gold medal)



Robotics: Introduction to AI in robotics
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Offline reinforcement learning - Learning from demonstration

▶ Collect data from real robot guided by the operator

▶ Pre-Train policy on collected data

▶ Optionally, fine-tune policy in simulation/ on real robot
▶ How to pre-train policy?

▶ behavior cloning - supervised learning

▶ argmin
θ

N∑
i=1

(πθ(si)− ai)
2

▶ diffusion policy - supervised learning
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Learning from video

▶ Instructional videos are widely available on YouTube

▶ Can we learn from them?

▶ Depends on the task/video, e.g. if human is visible
▶ we can extract human pose from video
▶ we can extract the manipulated object pose
▶ we can extract interaction forces



Robotics: Introduction to AI in robotics
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Learning tool manipulation from instructional video
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Large language models for robot learning - SayCan 1

▶ Combine LLM plan with learned (RL) set of skills
▶ LLM generates the global plan (prompt engineering needed)
▶ Ask LLM, how much is the skill contributing to the plan
▶ Ask skill, how likely it is to success

1https://say-can.github.io/
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SayCan example
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SayCan example
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Final work

▶ Reservation system in BRUTE
▶ reserve robot
▶ reserve teacher (V. Smutný, P. Krsek, V. Petŕık)

▶ Upload your report and code 24 hours before demonstration

▶ You need to demonstrate your work before signing up to exam



Robotics: Introduction to AI in robotics
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Exam

▶ CIIRC B670/B671 from 8AM
▶ Theoretical questions

▶ what is computed by forward dynamics
▶ how to efficiently compute inverse of rotation matrix

▶ Computation with coordinate frames
▶ express vector in coordinate frame A if you know its coordinates in coordinate frame B

▶ Computation of manipulator kinematics
▶ forward kinematics
▶ inverse kinematics
▶ Jacobian
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