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Optimal control - Model Predictive Control

» Find optimal control sequence ug, u1,...,ur to minimize cost function J
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Optimal control - Model Predictive Control

» Find optimal control sequence ug, u1,...,upr to minimize cost function J

> u* = argmin J(xzg,...,Z7,Ug,...,ur) St. Trr1 = f(@r, ur)
wQ,.., UT 1

P> x, is state of the system at time t

> wu is control (torque, velocity, ...)

> x;.1 = f(xs, us) is dynamics/simulation of the system
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Optimal control - Model Predictive Control

» Find optimal control sequence ug, u1,...,upr to minimize cost function J

> u* = argmin J(xzg,...,Z7,Ug,...,ur) St. Trr1 = f(@r, ur)
wQ,.., UT 1

P> x, is state of the system at time t

> wu is control (torque, velocity, ...)

> x;.1 = f(xs, us) is dynamics/simulation of the system

» Cost function:
T-1
> J= Z l(mt,ut) —l—lT(ZET)
t=0

» [ is cost function at time t
» [ is terminal cost function
» T is time horizon
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Optimal control - Model Predictive Control

» Find optimal control sequence ug, u1,...,upr to minimize cost function J
> u* = argmin J(xzg,...,Z7,Ug,...,ur) St. Trr1 = f(@r, ur)

wQ,.., UT 1
P> x, is state of the system at time t
> w is control (torque, velocity, .. .)
> x;.1 = f(xs, us) is dynamics/simulation of the system

» Cost function:
T—1
> J= 3 Uz, us) +lr(xr)

t=0
» [ is cost function at time t

» [ is terminal cost function
> T'is time horizon

» Use numerical optimization to solve the minimization problem
> dynamics (f) and costs (I,lr) needs to be differentiable
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MPC in practical application

» Robot controlled at 100Hz
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MPC in practical application

» Robot controlled at 100Hz
» For each control step, MPC is solved

> find sequence of control that optimize cost function
> fixed time horizon (e.g. 0.5 s)
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MPC in practical application

» Robot controlled at 100Hz
» For each control step, MPC is solved

> find sequence of control that optimize cost function
> fixed time horizon (e.g. 0.5 s)

» Apply first control from the sequence
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MPC in practical application

» Robot controlled at 100Hz
» For each control step, MPC is solved

> find sequence of control that optimize cost function
> fixed time horizon (e.g. 0.5 s)

» Apply first control from the sequence
> Repeat
» Why not applying all controls from the sequence?
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MPC in practical application

» Robot controlled at 100Hz
» For each control step, MPC is solved

> find sequence of control that optimize cost function
> fixed time horizon (e.g. 0.5 s)

Apply first control from the sequence

>

> Repeat
» Why not applying all controls from the sequence?
>

What if we do not have gradient of dynamics/costs?
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Reinforcement learning %‘5 i\
ﬂvironment

» Modeled as Markov Decision Process
j ReWard

Interpreter

% &

Agent

Action
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Reinforcement learning

» Modeled as Markov Decision Process
> Agent interacts with environment
> Agent receives reward for each action/state

ﬂvironment
j %

Interpreter
% &
Agent

Action
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Reinforcement learning %ﬁ i\
ﬂvironment

» Modeled as Markov Decision Process
C
> Agent interacts with environment <Z Re 2
. . W, 2
> Agent receives reward for each action/state Interpreter ard <
» Goal is to find policy that maximizes reward in time
» Stochastic policy: a ~ my(s) State \G‘x:-?J
> a is action (e.g. torque) o
> s is state of the system (e.g. joint angles and velocities, or image) Agent
P 7y is policy parameterized by 6 gen
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Reinforcement learning %ﬁ i\
ﬂvironment

» Modeled as Markov Decision Process
C
> Agent interacts with environment R 2
) . Warg &
> Agent receives reward for each action/state Interpreter
» Goal is to find policy that maximizes reward in time
» Stochastic policy: a ~ my(s) State \GIX:l,DJ
> a is action (e.g. torque) o
> s is state of the system (e.g. joint angles and velocities, or image) Agent
> 7y is policy parameterized by 6 gen
> Instantaneous reward: (s, a)
> Expected return of the policy: R = Eg,r,(s,) [2_; 7(8t; ar)] s-t. si11 ~ f(s¢,ar)
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Reinforcement learning %ﬁ i\
ﬂvironment

» Modeled as Markov Decision Process
C
> Agent interacts with environment R 2
) . Warg <
> Agent receives reward for each action/state Interpreter
» Goal is to find policy that maximizes reward in time
» Stochastic policy: a ~ my(s) State \GEJ
> a is action (e.g. torque) o
> s is state of the system (e.g. joint angles and velocities, or image) Agent
P 7y is policy parameterized by 6 gen
> Instantaneous reward: (s, a)
> Expected return of the policy: R = Eg,r,(s,) [2_; 7(8t; ar)] s-t. si11 ~ f(s¢,ar)
> Goal: argmax R
0
» Compare to MPC: argmin J s.t. @41 = f(x, uy)
ui,...,ur
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Policy gradient

» Policy my is parameterized by 6

> |s used to sample action a given state s: a ~ my(s)
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Policy gradient

» Policy my is parameterized by 6
> |s used to sample action a given state s: a ~ my(s)
» Gradient descent algorithm: 6,41 = 0; + aVyR(mg)

» @ parameterizes policy 7y
P « is learning rate
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Policy gradient

» Policy my is parameterized by 6
> Is used to sample action a given state s: a ~ my(s)
» Gradient descent algorithm: 6,41 = 0; + aVyR(mg)
» @ parameterizes policy 7y
P « is learning rate
> VoR(mg) = Ernr, [32; Vologmo(si)r(si, ar)]
> expectation over trajectories 7 sampled by following policy 7
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Policy gradient

» Policy my is parameterized by 6
> Is used to sample action a given state s: a ~ my(s)
» Gradient descent algorithm: 6,41 = 0; + aVyR(mg)
» @ parameterizes policy 7y
P « is learning rate
> VoR(mg) = Err, [D2; Vo log mo(si)r(se, at)]
P expectation over trajectories 7 sampled by following policy my
> in practise expectation is approximated by sampling a lot of trajectories (millions)
» why we need stochastic policy?

RL?;/‘ Robotics: Introduction to Al in robotics
/\J Vladimir Petrik 5/15



Policy gradient

» Policy my is parameterized by 6
> Is used to sample action a given state s: a ~ my(s)
» Gradient descent algorithm: 6,41 = 0; + aVyR(mg)
» @ parameterizes policy 7y
P « is learning rate
> VoR(mg) = Err, [D2; Vo log mo(si)r(se, at)]
P expectation over trajectories 7 sampled by following policy my
> in practise expectation is approximated by sampling a lot of trajectories (millions)
» why we need stochastic policy?

» Can we apply millions of trajectories to real robot?
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Policy gradient

Policy my is parameterized by 6

Is used to sample action a given state s: a ~ my(s)
Gradient descent algorithm: 0,1 = 6; + aVyR(mp)

>
>
>
>
>
>

Can

0 parameterizes policy 7y

« is learning rate

VoR(mg) = Errr, D, Vo log mo(se)r(se, ar)]

expectation over trajectories 7 sampled by following policy 7y

in practise expectation is approximated by sampling a lot of trajectories (millions)
why we need stochastic policy?

we apply millions of trajectories to real robot?

We need fast and accurate simulation of robots

>
>

Gazebo
NVIDIA lsaac Sim

o)
lhs
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Example of RL
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Example of RL
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Example of RL

Sake Cup Kiwi Fruit | “Thorn Toy Ball
[5.0 cm, 6.0 cm] (49 cm, 7.7 em] [4.4cm, 4.5 cm]
106g 122g 2g

Toy Cube | ‘Reaction Ball (L4) Shuttlecock
[45 cm, 5.7 em] (5.6 cm, 7.3 cm] [45 cm, 5.8 cm]
2g 48 Sg
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Reward shaping

» Finding solution to RL problem is hard
» sparse reward
» local minima
» long training time
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Reward shaping

» Finding solution to RL problem is hard
» sparse reward
» local minima
» long training time
» Reward shaping
» add additional reward to the original reward
> additional reward is designed to guide learning and avoid local minima
> engineering work
> |s there a better solution?
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Reward shaping
» Finding solution to RL problem is hard

» sparse reward
» local minima
» long training time

> Reward shaping
» add additional reward to the original reward
> additional reward is designed to guide learning and avoid local minima

Fosbury flop

» Example from high-jump (Fosbury flop - 1968 gold medal)

> engineering work
> |s there a better solution? Learning from demonstration.

A/

!
[
1
1

v
Path of center
of gravity

7/15
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Offline reinforcement learning - Learning from demonstration

> Collect data from real robot guided by the operator
» Pre-Train policy on collected data

» Optionally, fine-tune policy in simulation/ on real robot
» How to pre-train policy?
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Offline reinforcement learning - Learning from demonstration

> Collect data from real robot guided by the operator
» Pre-Train policy on collected data
» Optionally, fine-tune policy in simulation/ on real robot
» How to pre-train policy?
> behavior cloning - supervised learning
> argmin 3 (ra(s:) — i)

i=1
» diffusion policy - supervised learning
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Learning from video

» Instructional videos are widely available on YouTube

» Can we learn from them?
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Learning from video

» Instructional videos are widely available on YouTube
» Can we learn from them?

» Depends on the task/video, e.g. if human is visible

» we can extract human pose from video
P> we can extract the manipulated object pose
P we can extract interaction forces

-
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Learning tool manipulation from instructional video

Learning to Use Tools by Watching Videos

Input: instructional video from YouTube Output: tool manipulation skill transferred to a robot

Robotics: Introduction to Al in robotics
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Large language models for robot learning - SayCan

» Combine LLM plan with learned (RL) set of skills

> LLM generates the global plan (prompt engineering needed)

» Ask LLM, how much is the skill contributing to the plan

> Ask skill, how likely it is to success

How would you put =

an apple on the -30
table? 30

4
-30

I would: 1.

7 .
LLM -10
-20

I would: 1. Find an apple, 2.

Find an apple
Find a coke
Find a sponge
Pick up the apple
Pick up the coke

Place the apple
Place the coke
Go to the table

Go to the counter

0.6
0.6
0.6
0.2
0.2
0.1
0.1
0.8
0.8

Value
Functions

L m

https://say-can.github.io/

o
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SayCan example

Human: | spilled S
my coke, can you

bring me a

replacement?

RObOt: I W0u|d find a coke can pick up the coke c‘an .
1. Fl.nd a coke can 200 200
2- Ple Up the COKe find a water bottle put down the coke can
can . . 0.02 002
3- Bnng It tO yOU find a pepsi can bring it to you
4. Done
0.01 0.01
go to the table go to the trash can
0.01 0.00
Language x Affordance go to the trash can pick up the pepsi can
Combined Score 0.00 0.00

bring it to you

1.00

put down the coke can

0.99

go to the trash can

0.44
done

0.00
find a water bottle

0.00

done

1.00

go to the trash can

o3
find a coke can

002
find a water bottle

0.00

go to the table

0.00
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SayCan example
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Final work

» Reservation system in BRUTE

» reserve robot
> reserve teacher (V. Smutny, P. Krsek, V. Petrik)

» Upload your report and code 24 hours before demonstration

> You need to demonstrate your work before signing up to exam
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Exam

» CIIRC B670/B671 from 8AM
» Theoretical questions

» what is computed by forward dynamics
> how to efficiently compute inverse of rotation matrix
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Exam

» CIIRC B670/B671 from 8AM
» Theoretical questions

» what is computed by forward dynamics
> how to efficiently compute inverse of rotation matrix

» Computation with coordinate frames
P express vector in coordinate frame A if you know its coordinates in coordinate frame B
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Exam

» CIIRC B670/B671 from 8AM
» Theoretical questions

» what is computed by forward dynamics
> how to efficiently compute inverse of rotation matrix

» Computation with coordinate frames
P express vector in coordinate frame A if you know its coordinates in coordinate frame B
» Computation of manipulator kinematics

» forward kinematics
» inverse kinematics
» Jacobian
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