

Robotics: Introduction to AI in robotics

Vladimír Petrík

vladimir.petrik@cvut.cz

08.01.2024

Find optimal control sequence u_0, u_1, \dots, u_T to minimize cost function J

- Find optimal control sequence u_0, u_1, \dots, u_T to minimize cost function J
 - $oldsymbol{u}^* = rg \min_{oldsymbol{u}_0, \ldots, oldsymbol{u}_{T-1}} J(oldsymbol{x}_0, \ldots, oldsymbol{x}_T, oldsymbol{u}_0, \ldots, oldsymbol{u}_T)$ s.t. $oldsymbol{x}_{t+1} = f(oldsymbol{x}_t, oldsymbol{u}_t)$
 - $ightharpoonup x_t$ is state of the system at time t
 - ightharpoonup u is control (torque, velocity, ...)
 - $m{x}_{t+1} = f(m{x}_t, m{u}_t)$ is dynamics/simulation of the system

- lacktriangle Find optimal control sequence $m{u}_0, m{u}_1, \dots, m{u}_T$ to minimize cost function J
 - $oldsymbol{u}^* = rg \min_{oldsymbol{u}_0, \ldots, oldsymbol{u}_{T-1}} J(oldsymbol{x}_0, \ldots, oldsymbol{x}_T, oldsymbol{u}_0, \ldots, oldsymbol{u}_T)$ s.t. $oldsymbol{x}_{t+1} = f(oldsymbol{x}_t, oldsymbol{u}_t)$
 - $ightharpoonup x_t$ is state of the system at time t
 - ightharpoonup u is control (torque, velocity, \ldots)
 - $m{x}_{t+1} = f(m{x}_t, m{u}_t)$ is dynamics/simulation of the system
- Cost function:

- l is cost function at time t
- $ightharpoonup l_T$ is terminal cost function
- ► *T* is time horizon

- lacktriangle Find optimal control sequence $m{u}_0, m{u}_1, \dots, m{u}_T$ to minimize cost function J
 - $lacksymbol{u}^* = rg \min_{oldsymbol{u} = oldsymbol{u}} J(oldsymbol{x}_0, \dots, oldsymbol{x}_T, oldsymbol{u}_0, \dots, oldsymbol{u}_T)$ s.t. $oldsymbol{x}_{t+1} = f(oldsymbol{x}_t, oldsymbol{u}_t)$
 - $ightharpoonup x_t$ is state of the system at time t
 - ightharpoonup u is control (torque, velocity, \ldots)
 - $m{x}_{t+1} = f(m{x}_t, m{u}_t)$ is dynamics/simulation of the system
- Cost function:

- l is cost function at time t
- $ightharpoonup l_T$ is terminal cost function
- T is time horizon
- Use numerical optimization to solve the minimization problem
 - \blacktriangleright dynamics (f) and costs (l, l_T) needs to be differentiable

Robot controlled at 100Hz

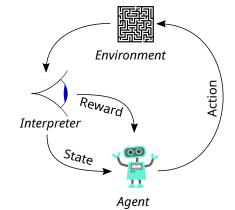
- ► Robot controlled at 100Hz
- ► For each control step, MPC is solved
 - ▶ find sequence of control that optimize cost function
 - ► fixed time horizon (e.g. 0.5 s)

- Robot controlled at 100Hz
- For each control step, MPC is solved
 - find sequence of control that optimize cost function
 - ► fixed time horizon (e.g. 0.5 s)
- Apply first control from the sequence

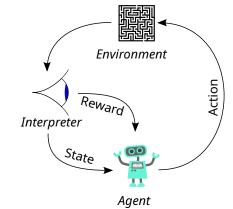
- Robot controlled at 100Hz
- ► For each control step, MPC is solved
 - find sequence of control that optimize cost function
 - ▶ fixed time horizon (e.g. 0.5 s)
- Apply first control from the sequence
- Repeat
- ▶ Why not applying all controls from the sequence?

- Robot controlled at 100Hz
- ► For each control step, MPC is solved
 - find sequence of control that optimize cost function
 - ► fixed time horizon (e.g. 0.5 s)
- Apply first control from the sequence
- Repeat
- Why not applying all controls from the sequence?
- What if we do not have gradient of dynamics/costs?

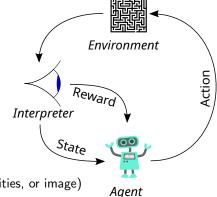
► Modeled as Markov Decision Process



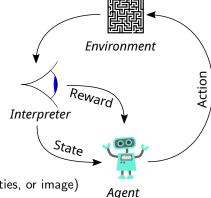
- Modeled as Markov Decision Process
- ► Agent interacts with environment
- ► Agent receives reward for each action/state



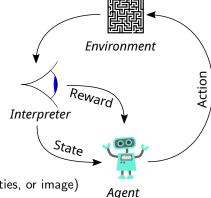
- Modeled as Markov Decision Process
- Agent interacts with environment
- Agent receives reward for each action/state
- ► Goal is to find policy that maximizes reward in time
- ► Stochastic policy: $\boldsymbol{a} \sim \pi_{\theta}(\boldsymbol{s})$
 - ▶ a is action (e.g. torque)
 - \triangleright s is state of the system (e.g. joint angles and velocities, or image)
 - \blacktriangleright π_{θ} is policy parameterized by θ



- Modeled as Markov Decision Process
- Agent interacts with environment
- Agent receives reward for each action/state
- Goal is to find policy that maximizes reward in time
- ► Stochastic policy: $\boldsymbol{a} \sim \pi_{\theta}(\boldsymbol{s})$
 - a is action (e.g. torque)
 - \triangleright s is state of the system (e.g. joint angles and velocities, or image)
 - \blacktriangleright π_{θ} is policy parameterized by θ
- lnstantaneous reward: r(s, a)
- Expected return of the policy: $R = \mathbb{E}_{\boldsymbol{a}_t \sim \pi_{\boldsymbol{a}}(\boldsymbol{s}_t)} \left[\sum_t r(\boldsymbol{s}_t, \boldsymbol{a}_t) \right]$ s.t. $\boldsymbol{s}_{t+1} \sim f(\boldsymbol{s}_t, \boldsymbol{a}_t)$



- Modeled as Markov Decision Process
- Agent interacts with environment
- Agent receives reward for each action/state
- ► Goal is to find policy that maximizes reward in time
- ▶ Stochastic policy: $\boldsymbol{a} \sim \pi_{\theta}(\boldsymbol{s})$
 - ▶ a is action (e.g. torque)
 - lacktriangleright s is state of the system (e.g. joint angles and velocities, or image)
 - $\blacktriangleright \pi_{\theta}$ is policy parameterized by θ
- lnstantaneous reward: r(s, a)
- lacksquare Expected return of the policy: $R = \mathbb{E}_{a_t \sim \pi_a(s_t)} \left[\sum_t r(s_t, a_t) \right]$ s.t. $s_{t+1} \sim f(s_t, a_t)$
- Goal: $\underset{\theta}{\operatorname{arg max}} R$
- lacksquare Compare to MPC: $\displaystyle \operatorname*{arg\,min}_{m{u}_1,...,m{u}_T} J$ s.t. $m{x}_{t+1} = f(m{x}_t,m{u}_t)$



- ▶ Policy π_{θ} is parameterized by θ
- ls used to sample action a given state s: $a \sim \pi_{\theta}(s)$

- ightharpoonup Policy π_{θ} is parameterized by θ
- ls used to sample action a given state s: $a \sim \pi_{\theta}(s)$
- ▶ Gradient descent algorithm: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$
 - ightharpoonup heta parameterizes policy $\pi_{ heta}$
 - $ightharpoonup \alpha$ is learning rate

- ▶ Policy π_{θ} is parameterized by θ
- ls used to sample action $m{a}$ given state $m{s}$: $m{a} \sim \pi_{ heta}(m{s})$
- ▶ Gradient descent algorithm: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$
 - ightharpoonup heta parameterizes policy $\pi_{ heta}$
 - $ightharpoonup \alpha$ is learning rate

 - lacktriangle expectation over trajectories au sampled by following policy $\pi_{ heta}$

- ightharpoonup Policy π_{θ} is parameterized by θ
- ls used to sample action $m{a}$ given state $m{s}$: $m{a} \sim \pi_{m{ heta}}(m{s})$
- ▶ Gradient descent algorithm: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$
 - ightharpoonup heta parameterizes policy $\pi_{ heta}$
 - $ightharpoonup \alpha$ is learning rate

Vladimír Petrík

- expectation over trajectories τ sampled by following policy π_{θ}
- in practise expectation is approximated by sampling a lot of trajectories (millions)
- why we need stochastic policy?

- ightharpoonup Policy π_{θ} is parameterized by θ
- ls used to sample action $m{a}$ given state $m{s}$: $m{a} \sim \pi_{ heta}(m{s})$
- ▶ Gradient descent algorithm: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$
 - ightharpoonup heta parameterizes policy $\pi_{ heta}$
 - $ightharpoonup \alpha$ is learning rate

 - lacktriangle expectation over trajectories au sampled by following policy $\pi_{ heta}$
 - in practise expectation is approximated by sampling a lot of trajectories (millions)
 - why we need stochastic policy?
- ► Can we apply millions of trajectories to real robot?

- ightharpoonup Policy π_{θ} is parameterized by θ
- ls used to sample action $m{a}$ given state $m{s}$: $m{a} \sim \pi_{m{ heta}}(m{s})$
- ▶ Gradient descent algorithm: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$
 - ightharpoonup heta parameterizes policy π_{θ}
 - $ightharpoonup \alpha$ is learning rate

 - lacktriangle expectation over trajectories au sampled by following policy $\pi_{ heta}$
 - in practise expectation is approximated by sampling a lot of trajectories (millions)
 - why we need stochastic policy?
- Can we apply millions of trajectories to real robot?
- We need fast and accurate simulation of robots
 - Gazebo
 - NVIDIA Isaac Sim

Reward shaping

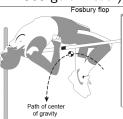
- Finding solution to RL problem is hard
 - sparse reward
 - local minima
 - long training time

Reward shaping

- Finding solution to RL problem is hard
 - sparse reward
 - local minima
 - long training time
- Reward shaping
 - add additional reward to the original reward
 - ▶ additional reward is designed to guide learning and avoid local minima
 - engineering work
- ▶ Is there a better solution?

Reward shaping

- Finding solution to RL problem is hard
 - sparse reward
 - local minima
 - long training time
- Reward shaping
 - add additional reward to the original reward
 - ▶ additional reward is designed to guide learning and avoid local minima
 - engineering work
- ▶ Is there a better solution? Learning from demonstration.
- Example from high-jump (Fosbury flop 1968 gold medal)



Offline reinforcement learning - Learning from demonstration

- Collect data from real robot guided by the operator
- Pre-Train policy on collected data
- Optionally, fine-tune policy in simulation/ on real robot
- ► How to pre-train policy?

Offline reinforcement learning - Learning from demonstration

- Collect data from real robot guided by the operator
- ▶ Pre-Train policy on collected data
- Optionally, fine-tune policy in simulation/ on real robot
- ► How to pre-train policy?
 - behavior cloning supervised learning

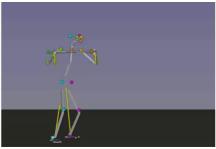
 - diffusion policy supervised learning

Learning from video

- ▶ Instructional videos are widely available on YouTube
- ► Can we learn from them?

Learning from video

- Instructional videos are widely available on YouTube
- Can we learn from them?
- ▶ Depends on the task/video, e.g. if human is visible
 - we can extract human pose from video
 - we can extract the manipulated object pose
 - we can extract interaction forces



Learning tool manipulation from instructional video

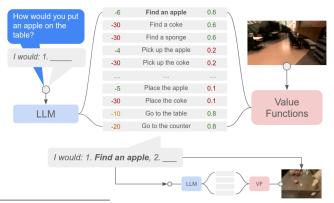
Learning to Use Tools by Watching Videos

Input: instructional video from YouTube

Output: tool manipulation skill transferred to a robot

Large language models for robot learning - SayCan ¹

- Combine LLM plan with learned (RL) set of skills
 - ► LLM generates the global plan (prompt engineering needed)
 - Ask LLM, how much is the skill contributing to the plan
 - Ask skill, how likely it is to success



¹https://say-can.github.io/

SayCan example

Human: I spilled my coke, can you bring me a replacement?

Robot: I would

- 1. Find a coke can
- 2. Pick up the coke can
- 3. Bring it to you
- 4. Done

SayCan example

Final work

- Reservation system in BRUTE
 - reserve robot
 - reserve teacher (V. Smutný, P. Krsek, V. Petrík)
- ▶ Upload your report and code 24 hours before demonstration
- ▶ You need to demonstrate your work before signing up to exam

Exam

- CIIRC B670/B671 from 8AM
- ► Theoretical questions
 - what is computed by forward dynamics
 - how to efficiently compute inverse of rotation matrix

Exam

- CIIRC B670/B671 from 8AM
- ► Theoretical questions

Vladimír Petrík

- what is computed by forward dynamics
- how to efficiently compute inverse of rotation matrix
- Computation with coordinate frames
 - express vector in coordinate frame A if you know its coordinates in coordinate frame B

Exam

- CIIRC B670/B671 from 8AM
- ► Theoretical questions
 - what is computed by forward dynamics
 - how to efficiently compute inverse of rotation matrix
- Computation with coordinate frames
 - express vector in coordinate frame A if you know its coordinates in coordinate frame B
- Computation of manipulator kinematics
 - forward kinematics
 - inverse kinematics
 - Jacobian