

## **Robotics: Introduction to AI in robotics**

Vladimír Petrík vladimir.petrik@cvut.cz 08.01.2024

#### **Optimal control - Model Predictive Control**

- Find optimal control sequence  $u_0, u_1, \ldots, u_T$  to minimize cost function J
  - $\bullet \ u^* = \argmin_{u_0,...,u_{T-1}} J(x_0,...,x_T,u_0,...,u_T) \text{ s.t. } x_{t+1} = f(x_t,u_t)$
  - $x_t$  is state of the system at time t
  - *u* is control (torque, velocity, ...)
  - $x_{t+1} = f(x_t, u_t)$  is dynamics/simulation of the system
- Cost function:

$$\blacktriangleright J = \sum_{t=0}^{T-1} l(\boldsymbol{x}_t, \boldsymbol{u}_t) + l_T(\boldsymbol{x}_T)$$

- *l* is cost function at time t
- $\blacktriangleright$   $l_T$  is terminal cost function
- T is time horizon
- Use numerical optimization to solve the minimization problem
  - dynamics (f) and costs  $(l, l_T)$  needs to be differentiable



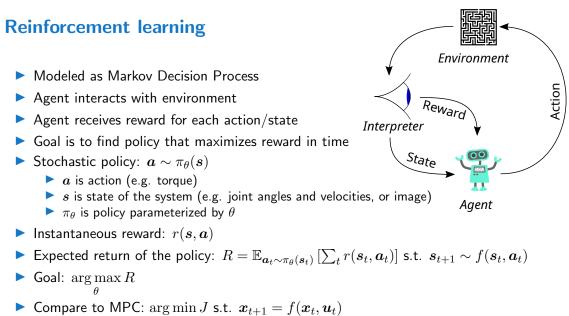
Robotics: Introduction to AI in robotics Vladimír Petrík

### **MPC** in practical application

- Robot controlled at 100Hz
- ► For each control step, MPC is solved
  - find sequence of control that optimize cost function
  - ► fixed time horizon (e.g. 0.5 s)
- Apply first control from the sequence
- Repeat
- Why not applying all controls from the sequence?
- What if we do not have gradient of dynamics/costs?



Robotics: Introduction to AI in robotics Vladimír Petrík



 $<sup>\</sup>bar{\bm{u}}_1,\!...,\!\bar{\bm{u}}_T$ 

Robotics: Introduction to AI in robotics Vladimír Petrík

### **Policy gradient**

- ▶ Policy  $\pi_{\theta}$  is parameterized by  $\theta$
- ls used to sample action a given state s:  $a \sim \pi_{\theta}(s)$
- Gradient descent algorithm:  $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$ 
  - $\theta$  parameterizes policy  $\pi_{\theta}$
  - $\blacktriangleright \alpha$  is learning rate
  - $\blacktriangleright \nabla_{\theta} R(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \sum_{t} \nabla_{\theta} \log \pi_{\theta}(s_{t}) r(s_{t}, a_{t}) \right]$
  - expectation over trajectories au sampled by following policy  $\pi_{ heta}$
  - in practise expectation is approximated by sampling a lot of trajectories (millions)
  - why we need stochastic policy?
- Can we apply millions of trajectories to real robot?
- We need fast and accurate simulation of robots
  - Gazebo
  - NVIDIA Isaac Sim



Robotics: Introduction to AI in robotics Vladimír Petrík

#### Example of RL





**Robotics: Introduction to AI in robotics** Vladimír Petrík

### **Reward shaping**

- Finding solution to RL problem is hard
  - sparse reward
  - local minima
  - long training time
- Reward shaping
  - add additional reward to the original reward
  - > additional reward is designed to guide learning and avoid local minima
  - engineering work
- Is there a better solution? Learning from demonstration.
- Example from high-jump (Fosbury flop 1968 gold medal)





Robotics: Introduction to AI in robotics Vladimír Petrík

#### Offline reinforcement learning - Learning from demonstration

- Collect data from real robot guided by the operator
- Pre-Train policy on collected data
- Optionally, fine-tune policy in simulation/ on real robot
- How to pre-train policy?
  - behavior cloning supervised learning

• arg min 
$$\sum_{\theta}^{N} (\pi_{\theta}(s_i) - a_i)^2$$

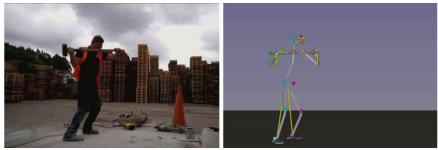
diffusion policy - supervised learning



Robotics: Introduction to AI in robotics Vladimír Petrík

#### Learning from video

- Instructional videos are widely available on YouTube
- Can we learn from them?
- Depends on the task/video, e.g. if human is visible
  - we can extract human pose from video
  - we can extract the manipulated object pose
  - we can extract interaction forces





Robotics: Introduction to AI in robotics Vladimír Petrík

#### Learning tool manipulation from instructional video

# Learning to Use Tools by Watching Videos



Input: instructional video from YouTube



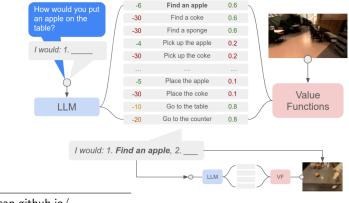
Output: tool manipulation skill transferred to a robot



Robotics: Introduction to AI in robotics Vladimír Petrík

#### Large language models for robot learning - SayCan<sup>1</sup>

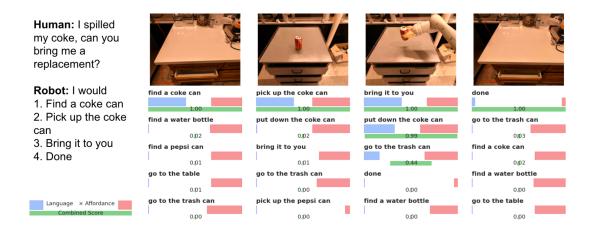
- Combine LLM plan with learned (RL) set of skills
  - LLM generates the global plan (prompt engineering needed)
  - Ask LLM, how much is the skill contributing to the plan
  - Ask skill, how likely it is to success



<sup>1</sup>https://say-can.github.io/



#### SayCan example





Robotics: Introduction to AI in robotics Vladimír Petrík

## SayCan example





Robotics: Introduction to AI in robotics Vladimír Petrík

#### **Final work**

- Reservation system in BRUTE
  - reserve robot
  - reserve teacher (V. Smutný, P. Krsek, V. Petrík)
- Upload your report and code 24 hours before demonstration
- > You need to demonstrate your work before signing up to exam



**Robotics: Introduction to AI in robotics** Vladimír Petrík

#### Exam

- CIIRC B670/B671 from 8AM
- Theoretical questions
  - what is computed by forward dynamics
  - how to efficiently compute inverse of rotation matrix
- Computation with coordinate frames
  - $\blacktriangleright$  express vector in coordinate frame A if you know its coordinates in coordinate frame B
- Computation of manipulator kinematics
  - forward kinematics
  - inverse kinematics
  - Jacobian



8 Robotics: Introduction to AI in robotics Vladimír Petrík