

Robotics: Course organization

Vladimír Petrík vladimir.petrik@cvut.cz 23.09.2024

Manipulation robotics

Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

Manipulation robotics

Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

► Kinematics (7 lectures)

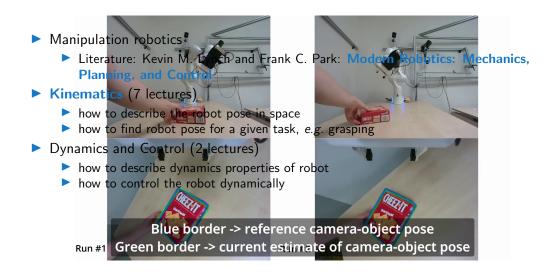
- how to describe the robot pose in space
- how to find robot pose for a given task, e.g. grasping

Manipulation robotics

Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

Kinematiks (7 lectures)

- how to describe the robot pose in space
- how to find robot pose for a given task, e.g. grasping


Manipulation robotics

Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

Kinematics (7 lectures)

- how to describe the robot pose in space
- how to find robot pose for a given task, e.g. grasping
- Dynamics and Control (2 lectures)
 - how to describe dynamics properties of robot
 - how to control the robot dynamically

Manipulation robotics

- Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control
- Kinematics (7 lectures)
 - how to describe the robot pose in space
 - how to find robot pose for a given task, e.g. grasping
- Dynamics and Control (2 lectures)
 - how to describe dynamics properties of robot
 - how to control the robot dynamically
- Al in robotics (4 lectures)
 - Motion planning
 - Modern AI applications (RL, GraspNet, ...)

Manipulation robotics

Literature: Kevin M. Lynch and Frank C. Park: Modern Robotics: Mechanics, Planning, and Control

Kinematics (7 lectures)

- how to describe the robot pose in space
- how to find robot pose for a given task, e.g. grasping

Dynamics and Control (2 lectures)

- how to describe dynamics properties of robot
- how to control the robot dynamically
- AI in robotics (4 lectures)
 - Motion planning
 - Modern AI applications (RL, GraspNet, ...)

Laboratories

Program robotics toolbox in Python

- combination of work in lab and homework
- automatic evaluation with unit-tests
- labs are in KN:E-132
- labs follow-up the lectures, study the lecture before lab

Laboratories

Program robotics toolbox in Python

- combination of work in lab and homework
- automatic evaluation with unit-tests
- labs are in KN:E-132
- labs follow-up the lectures, study the lecture before lab
- Solving practical project assignment on real industrial robot
 - robots are located in CIIRC:JP:B-415
 - brute reservation system
 - optional (recommended) consultations
 - safety in the 7th week is mandatory to attend

Evaluation

Homework:

- four mandatory assignments: 10 points
- four optional assignments: max 10 points
- Final project: max 20 points
- ▶ Tests during semester (7. and 14. week): max 20 points
- Exam: max 40 points

Teachers

Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz

Teachers

Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz

Laboratories

- Robotics toolbox and homework
 - Martin Cífka
 - David Kovář

Teachers

Lectures: Vladimír Petrík, vladimir.petrik@cvut.cz

- Laboratories
 - Robotics toolbox and homework
 - Martin Cífka
 - David Kovář
 - Final project on real robots
 - Vladimír Smutný
 - Pavel Krsek

