

Robotics: Rigid body motion

Vladimír Petrík

vladimir.petrik@cvut.cz

23.09.2023

Mobilní robot, UGV - unmanned ground vehicle

Mobilní robot, UGV - unmanned ground vehicle

Flying robots (e.g. drones)

Mobilní robot, UGV - unmanned ground vehicle

Flying robots (e.g. drones)

Walking robots (e.g. humanoids)

Mobilní robot, UGV - unmanned ground vehicle

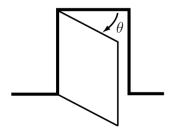
Flying robots (e.g. drones)

Walking robots (e.g. humanoids)

Manipulators (např. Franka Emika Panda)

Robot configuration

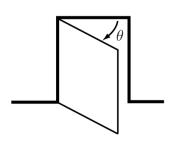
Complete specification of the position of every point of the robot.



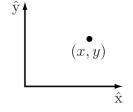
The configuration is described by the angle θ .

Robot configuration

Complete specification of the position of every point of the robot.



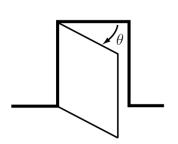
The configuration is described by the angle θ .



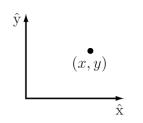
Point in plane is described by two coordinates.

Robot configuration

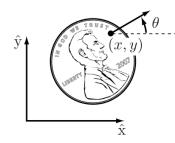
Complete specification of the position of every point of the robot.



The configuration is described by the angle θ .



Point in plane is described by two coordinates.



Planar rigid object configuration consists of the position and orientation.

Degrees of freedom (DoF)

- ► The minimum number of real-valued coordinates needed to represent the configuration.
 - door: 1
 - planar point: 2
 - planar rigid object: 3
 - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)

Degrees of freedom (DoF)

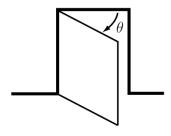
- ► The minimum number of real-valued coordinates needed to represent the configuration.
 - door: 1
 - planar point: 2
 - planar rigid object: 3
 - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)
- Determining DoF
 - (sum of freedom of the points) (number of independent constraints)
 - ▶ Rigid objects how it is defined?

Degrees of freedom (DoF)

- ► The minimum number of real-valued coordinates needed to represent the configuration.
 - door: 1
 - planar point: 2
 - planar rigid object: 3
 - manipulators: from 1 (e.g. rotating table) to tens (e.g. humanoids)
- Determining DoF
 - (sum of freedom of the points) (number of independent constraints)
 - Rigid objects how it is defined?
 - ▶ The distance between any two given points on a rigid body remains constant
 - lacktriangle Exercise: write constraints for N points of planar rigid object
 - ► For some robots, determining number of DoF is non-trivial

Configuration space - $\mathcal C$

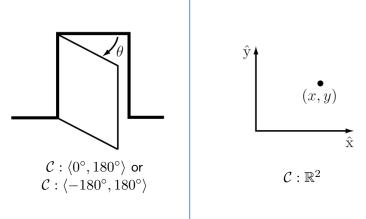
- ightharpoonup The N-dimensional space (N correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- ► Contains all possible configurations of the robot



 $\mathcal{C}:\langle 0^{\circ}, 180^{\circ} \rangle$ or $\mathcal{C}:\langle -180^{\circ}, 180^{\circ} \rangle$

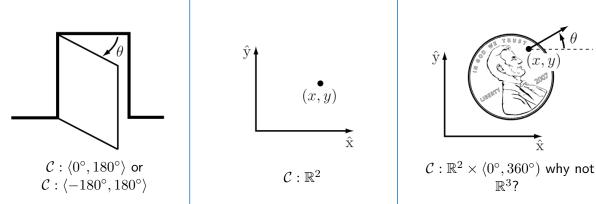
Configuration space - $\mathcal C$

- ightharpoonup The N-dimensional space (N correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- ► Contains all possible configurations of the robot

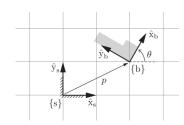


Configuration space - $\mathcal C$

- ightharpoonup The N-dimensional space (N correspond to number of DoF)
- Every point of configuration space correspond to one configuration
- ► Contains all possible configurations of the robot



- ► We attach a **body** frame to rigid body
 - Usually placed in the center of mass (but not required)
 - ► Can be placed outside of the body
 - Body frame is not moving w.r.t. to the body

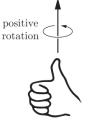


 \hat{y}_{s} \hat{y}_{b} θ $\{s\}$

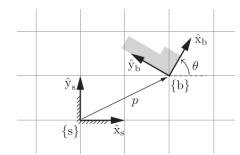
- ► We attach a **body** frame to rigid body
 - Usually placed in the center of mass (but not required)
 - Can be placed outside of the body
 - ▶ Body frame is not moving w.r.t. to the body
- ▶ We select a fixed reference frame
 - center of the room
 - corner of the table
 - base of the manipulator

 $\hat{\mathbf{x}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$ $\hat{\mathbf{y}}_{\mathbf{b}}$

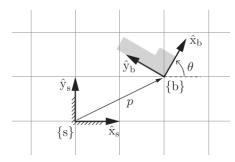
- ► We attach a **body** frame to rigid body
 - ► Usually placed in the center of mass (but not required)
 - Can be placed outside of the body
 - ▶ Body frame is not moving w.r.t. to the body
- ► We select a fixed reference frame
 - center of the room
 - corner of the table
 - base of the manipulator
- ► All frames are right-handed



- ► The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame



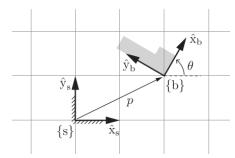
- ► The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- ► Body frame origin
 - $p = p_x \hat{x}_s + p_y \hat{y}_s \in \mathbb{R}^2$
 - If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$



- ► The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- ▶ Body frame origin

$$p = p_x \hat{\boldsymbol{x}}_s + p_y \hat{\boldsymbol{y}}_s \in \mathbb{R}^2$$

- If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$
- Orientation
 - ▶ Angle $\theta \in (0^\circ, 360^\circ)$



- ► The configuration of body is given by
 - position of body frame w.r.t. reference frame
 - orientation of body frame w.r.t. reference frame
- ▶ Body frame origin

$$\mathbf{p} = p_x \hat{\mathbf{x}}_s + p_y \hat{\mathbf{y}}_s \in \mathbb{R}^2$$

- If reference frame is clear from the context: $\boldsymbol{p} = (p_x, p_y)^{\top}$
- Orientation
 - Angle $\theta \in \langle 0^{\circ}, 360^{\circ} \rangle$
 - Convenient for next computations:

$$\hat{\boldsymbol{x}}_{b} = +\cos\theta\hat{\boldsymbol{x}}_{s} + \sin\theta\hat{\boldsymbol{y}}_{s}$$

$$\hat{\boldsymbol{x}}_{b} = +\cos\theta\hat{\boldsymbol{x}}_{s} + \cos\theta\hat{\boldsymbol{x}}_{s}$$

$$\hat{\boldsymbol{y}}_{\boldsymbol{b}} = -\sin\theta\hat{\boldsymbol{x}}_{\boldsymbol{s}} + \cos\theta\hat{\boldsymbol{y}}_{\boldsymbol{s}}$$

Rotation matrix
$$R = (\hat{x}_b, \hat{y}_b) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

{b}

 $\{s\}$

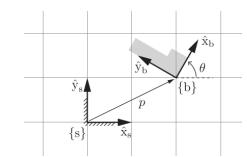
- ▶ R has 4 numbers but only 1 DoF 3 independent constraints
 - both columns are unit vectors
 - columns are orthogonal to each other

- R has 4 numbers but only 1 DoF 3 independent constraints
 - both columns are unit vectors
 - columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, i.e. $R \in SO(2)$
 - Special Orthogonal group
 - det(R) = 1
 - $ightharpoonup RR^{ op} = I$, i.e. $R^{-1} = R^{ op}$
 - $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
 - $ightharpoonup R_1R_2? = ?R_2R_1$

- R has 4 numbers but only 1 DoF 3 independent constraints
 - both columns are unit vectors
 - columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, i.e. $R \in SO(2)$
 - Special Orthogonal group
 - $\det(R) = 1$
 - $ightharpoonup RR^{ op} = I$, i.e. $R^{-1} = R^{ op}$
 - $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
 - ► For SO(2) $R_1R_2 = R_2R_1$

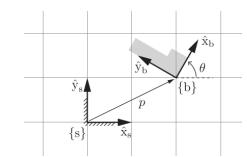
- R has 4 numbers but only 1 DoF 3 independent constraints
 - both columns are unit vectors
 - columns are orthogonal to each other
- ▶ Set of all rotation matrix is SO(2) group, i.e. $R \in SO(2)$
 - Special Orthogonal group
 - $\det(R) = 1$
 - $ightharpoonup RR^{\top} = I$, i.e. $R^{-1} = R^{\top}$
 - $ightharpoonup (R_1R_2) R_3 = R_1 (R_2R_3)$
 - ► For SO(2) $R_1R_2 = R_2R_1$
- Usage of rotation matrix
 - to represent an orientation of the frame
 - to change the reference frame in which a vector is represented
 - ► to rotate vector/frame

- ightharpoonup A pair (R_{ab}, \boldsymbol{p})
 - represents pose/configuration of the body



Vladimír Petrík

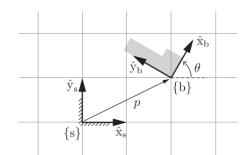
- ightharpoonup A pair (R_{ab}, \boldsymbol{p})
 - represents pose/configuration of the body
 - $m{v}_a = R_{ab} m{v}_b + m{p}$ changes the reference frame of a vector



Vladimír Petrík

- ightharpoonup A pair (R_{ab}, \boldsymbol{p})
 - represents pose/configuration of the body
 - $m{v}_a = R_{ab} m{v}_b + m{p}$ changes the reference frame of a vector
 - ightharpoonup moves vector/frame (R, t)

$$oldsymbol{R}_{\mathsf{moved}} = R_{ab}R \quad oldsymbol{t}_{\mathsf{moved}} = R_{ab}oldsymbol{t} + oldsymbol{p}$$



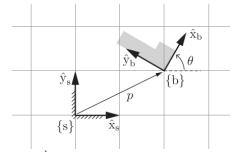
- ightharpoonup A pair (R_{ab}, \boldsymbol{p})
 - represents pose/configuration of the body
 - changes the reference frame of a vector

$$\boldsymbol{v}_a = R_{ab}\boldsymbol{v}_b + \boldsymbol{p}$$

lacktriangle moves vector/frame $(R, oldsymbol{t})$

$$R_{\text{moved}} = R_{ab}R$$
 $t_{\text{moved}} = R_{ab}t + p$

- Special Euclidean Group
- represents both translation and rotation in a single matrix
- $\mathbf{v}_a^H = T_{ab} \mathbf{v}_b^H$
- $(T_1T_2) T_3 = T_1 (T_2T_3)$
- $T_1T_2 \neq T_2T_1$



- ightharpoonup A pair (R_{ab}, \boldsymbol{p})
 - represents pose/configuration of the body
 - changes the reference frame of a vector
 - $\mathbf{v}_a = R_{ab}\mathbf{v}_b + \mathbf{p}$
 - ightharpoonup moves vector/frame (R, t)

$$oldsymbol{R}_{\mathsf{moved}} = R_{ab}R \quad oldsymbol{t}_{\mathsf{moved}} = R_{ab}oldsymbol{t} + oldsymbol{p}$$

- Special Euclidean Group
- represents both translation and rotation in a single matrix
- $\mathbf{v}_a^H = T_{ab} \mathbf{v}_b^H$
- $(T_1T_2)T_3 = T_1(T_2T_3)$
- $T_1T_2 \neq T_2T_1$
- ▶ Inverse T^{-1}
 - computing inverse of a matrix is costly

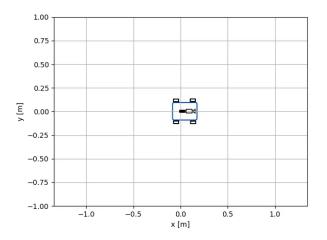
$$T^{-1} = \begin{pmatrix} R^{\top} & -R^{\top} \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

{b}

 $\{s\}$

SE(2) example

$$T_{\mathsf{next}} = T_{\mathsf{current}} T_x(\delta_x)$$
 $T_{\mathsf{next}} = T_{\mathsf{current}} T_{\theta}(\delta_{\theta})$ $T_{\mathsf{next}} = T_{\mathsf{current}} T_x(\delta_x)$ Delta transformations are defined in robot frame.

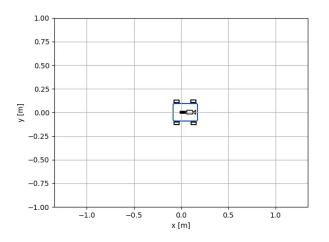


SE(2) example

$$T_{\mathsf{next}} = T_x(\delta_x) T_{\mathsf{current}}$$
 $T_{\mathsf{next}} = T_{\theta}(\delta_{\theta}) T_{\mathsf{current}}$ $T_{\mathsf{next}} = T_x(\delta_x) T_{\mathsf{current}}$ Delta transformations are defined in reference frame.

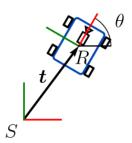
SE(2) example

$$T_{\rm next} = T_x(\delta_x) T_{\rm current} \qquad T_{\rm next} = T_\theta(\delta_\theta) T_{\rm current} \qquad T_{\rm next} = T_x(\delta_x) T_{\rm current}$$
 Delta transformations are defined in reference frame.



SE(2) example camera

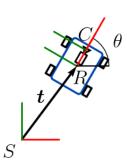
$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix}$$



SE(2) example camera

$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

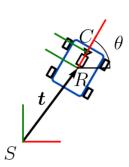
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



SE(2) example camera

$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

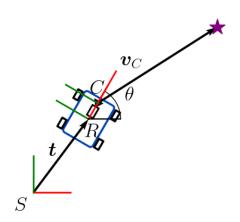
$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



SE(2) example camera

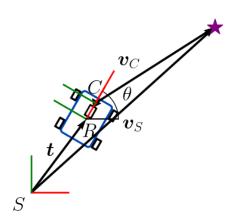
$$T_{SR} = \begin{pmatrix} R(\theta) & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

$$T_{RC} = \begin{pmatrix} I & (0.1 & 0)^{\top} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$



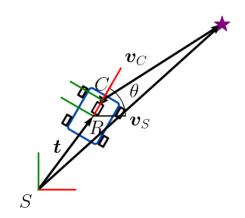
SE(2) example camera

$$T_{SR} = egin{pmatrix} R(heta) & m{t} \\ m{o}^{ op} & 1 \end{pmatrix}$$
 $T_{RC} = egin{pmatrix} I & egin{pmatrix} (0.1 & 0)^{ op} \\ m{o}^{ op} & 1 \end{pmatrix}$ How to compute $m{v}_S$?



SE(2) example camera

$$T_{SR} = egin{pmatrix} R(heta) & m{t} \\ m{o}^{ op} & 1 \end{pmatrix}$$
 $T_{RC} = egin{pmatrix} I & \left(0.1 & 0
ight)^{ op} \\ m{o}^{ op} & 1 \end{pmatrix}$ How to compute $m{v}_S$? $T_{SC} = T_{SR}T_{RC}$ $m{v}_S = T_{SC}m{v}_C$



Extending to SO(3) and SE(3)

- ► *SO*(3)
 - $ightharpoonup \det(R) = 1$
 - $ightharpoonup RR^{ op} = I$. i.e. $R^{-1} = R^{ op}$
 - $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
 - $ightharpoonup R_1R_2? = ?R_2R_1$

Extending to SO(3) and SE(3)

- ► *SO*(3)
 - $ightharpoonup \det(R) = 1$
 - $ightharpoonup RR^{ op} = I$. i.e. $R^{-1} = R^{ op}$
 - $(R_1 R_2) R_3 = R_1 (R_2 R_3)$
 - $ightharpoonup R_1R_2
 eq R_2R_1$ obecně

Extending to SO(3) and SE(3)

- ► *SO*(3)
 - $ightharpoonup \det(R) = 1$

$$ightharpoonup RR^{\top} = I$$
. i.e. $R^{-1} = R^{\top}$

$$(R_1 R_2) R_3 = R_1 (R_2 R_3)$$

- $ightharpoonup R_1R_2
 eq R_2R_1$ obecně
- ► *SE*(3)
 - $\mathbf{v}_a^H = T_{ab} \mathbf{v}_b^H$
 - $(T_1T_2) T_3 = T_1 (T_2T_3)$
 - $T_1T_2 \neq T_2T_1$
 - $T^{-1} = \begin{pmatrix} R^{\top} & -R^{\top} \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$

How to compute $R \in SO(3)$?

ightharpoonup Composing rotations around the x, y, z axes

$$R_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

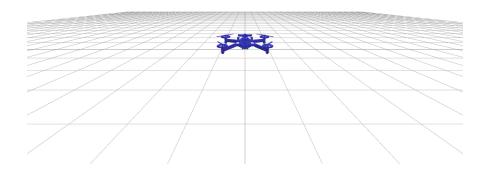
$$R_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix}$$

$$R_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

From other representations of rotations

Example of SE(3)

$$T_{\mathsf{next}} = TT_z(\delta_z)$$
 $T_{\mathsf{next}} = TR_z(\theta_z)$ $T_{\mathsf{next}} = TR_y(\theta_y)$ $T_{\mathsf{next}} = TT_x(\delta_x)$ $R_y, R_z \in SE(3)!$



 $\bullet \theta \in \mathbb{R}, \quad \hat{\omega} \in \mathbb{R}^3, \quad \|\hat{\omega}\| = 1$

- $\bullet \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- ightharpoonup Axis-angle to R
 - ▶ Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta \left[\hat{\omega}\right] + (1 \cos \theta) \left[\hat{\omega}\right]^2$
 - Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - ightharpoonup Example: compute R_z

- $m{\theta} \in \mathbb{R}, \quad \hat{m{\omega}} \in \mathbb{R}^3, \quad \|\hat{m{\omega}}\| = 1$
- ightharpoonup Axis-angle to R
 - ▶ Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta [\hat{\omega}] + (1 \cos \theta) [\hat{\omega}]^2$

 - ightharpoonup Example: compute R_z
- ightharpoonup Axis-angle from R algorithm
 - ▶ If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.

- $\bullet \ \theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- ightharpoonup Axis-angle to R
 - ▶ Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta \left[\hat{\omega} \right] + (1 \cos \theta) \left[\hat{\omega} \right]^2$
 - Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - ightharpoonup Example: compute R_z
- ightharpoonup Axis-angle from R algorithm
 - ▶ If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.
 - ▶ If $\operatorname{tr} R = -1$ then $\theta = \pi$ and

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{pmatrix} r_{13} & r_{23} & 1+r_{33} \end{pmatrix}^{\top} \text{ if } r_{33} \neq -1$$

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{pmatrix} r_{12} & 1+r_{22} & r_{32} \end{pmatrix}^{\top} \text{ if } r_{22} \neq -1$$

$$\hat{\boldsymbol{\omega}} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{pmatrix} 1+r_{11} & r_{21} & r_{31} \end{pmatrix}^{\top} \text{ if } r_{11} \neq -1$$

- \bullet $\theta \in \mathbb{R}, \quad \hat{\boldsymbol{\omega}} \in \mathbb{R}^3, \quad \|\hat{\boldsymbol{\omega}}\| = 1$
- ightharpoonup Axis-angle to R
 - ▶ Rodrigues' formula $R(\hat{\omega}, \theta) = I + \sin \theta \left[\hat{\omega}\right] + (1 \cos \theta) \left[\hat{\omega}\right]^2$
 - Skew-symmetric matrix $[\boldsymbol{\omega}] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$
 - ightharpoonup Example: compute R_z
- ightharpoonup Axis-angle from R algorithm
 - ▶ If R = I then $\theta = 0$ and $\hat{\omega}$ is undefined.
 - ▶ If $\operatorname{tr} R = -1$ then $\theta = \pi$ and

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{32})}} \begin{pmatrix} r_{13} & r_{23} & 1+r_{33} \end{pmatrix}^{\top} \text{ if } r_{33} \neq -1$$

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{22})}} \begin{pmatrix} r_{12} & 1+r_{22} & r_{32} \end{pmatrix}^{\top} \text{ if } r_{22} \neq -1$$

$$\hat{\omega} = \frac{1}{\sqrt{2(1+r_{11})}} \begin{pmatrix} 1+r_{11} & r_{21} & r_{31} \end{pmatrix}^{\top} \text{ if } r_{11} \neq -1$$

• Otherwise $\theta = \arccos\left(1/2\left(\operatorname{tr} R - 1\right)\right)$ and $[\hat{\boldsymbol{\omega}}] = \frac{1}{2\sin\theta}(R - R^{\top})$

Exponential coordinates

- ightharpoonup A single vector $\omega \in \mathbb{R}^3$
- ► Also called Euler vector or Euler-Rodrigues parameters
- ▶ Mapping to angle-axis representation:
 - ho $\theta = \|\omega\|$
 - $\hat{\omega} = \frac{\omega}{\theta}$

Exponential coordinates

- ightharpoonup A single vector $oldsymbol{\omega} \in \mathbb{R}^3$
- Also called Euler vector or Euler-Rodrigues parameters
- ► Mapping to angle-axis representation:
 - ho $\theta = \|\omega\|$
 - $\hat{\omega} = \hat{\omega}$
- ► Exponential to/from *R*
 - $ightharpoonup R = \exp \omega$: use Rodrigues' formula
 - $m{\omega} = \log R$: use angle axis from R algorithm

Exponential coordinates

- ightharpoonup A single vector $oldsymbol{\omega} \in \mathbb{R}^3$
- ► Also called Euler vector or Euler-Rodrigues parameters
- Mapping to angle-axis representation:
 - ho $\theta = \|\omega\|$
 - $\hat{\boldsymbol{\omega}} = \hat{\boldsymbol{\omega}}$
- ightharpoonup Exponential to/from R
 - $ightharpoonup R = \exp \omega$: use Rodrigues' formula
 - $m{\omega} = \log R$: use angle axis from R algorithm
- ► Why exponential?
 - lacktriangle it correspond to matrix exponential/logarithm of $[oldsymbol{\omega}]$
 - lacktriangleright if ω is angular velocity, its integration for one unit of time leads to exponential and the final orientation is R
 - numerically sensitive to small angles

- $\mathbf{p} \in \mathbb{R}^4, \quad \|\mathbf{q}\| = 1$
- ► From axis-angle
 - $p_w = \cos(\theta/2)$
 - $\mathbf{q}_{xyz} = \hat{\boldsymbol{\omega}} \sin\left(\theta/2\right)$

- $\mathbf{p} \in \mathbb{R}^4, \quad \|\mathbf{q}\| = 1$
- ► From axis-angle

$$q_w = \cos(\theta/2)$$

$$\mathbf{q}_{xyz} = \hat{\boldsymbol{\omega}} \sin \left(\theta/2 \right)$$

- ightharpoonup From R
 - $q_w = 1/2\sqrt{1 + \operatorname{tr} R}$
 - $\mathbf{q}_{xyz} = \frac{1}{4q_w} \begin{pmatrix} r_{32} r_{23} & r_{13} r_{31} & r_{21} r_{12} \end{pmatrix}^{\top}$

- $\mathbf{p} \in \mathbb{R}^4, \quad \|\mathbf{q}\| = 1$
- ► From axis-angle

$$q_w = \cos\left(\theta/2\right)$$

$$\mathbf{q}_{xyz} = \hat{\boldsymbol{\omega}} \sin \left(\theta/2 \right)$$

ightharpoonup From R

$$q_w = 1/2\sqrt{1 + \text{tr } R}$$

$$\mathbf{q}_{xyz} = \frac{1}{4a...} \begin{pmatrix} r_{32} - r_{23} & r_{13} - r_{31} & r_{21} - r_{12} \end{pmatrix}^{\top}$$

- ightharpoonup To R
 - $R = \exp\left(2\arccos\left(q_w\right) \frac{q_{xyz}}{\|q_{xyz}\|}\right)$
 - i.e. rotate about q_{xyz} with $\theta = 2 \arccos(q_w)$

- $\mathbf{p} \in \mathbb{R}^4, \quad \|\mathbf{q}\| = 1$
- ► From axis-angle

$$q_w = \cos\left(\theta/2\right)$$

$$\mathbf{q}_{xyz} = \hat{\boldsymbol{\omega}} \sin \left(\theta/2 \right)$$

- ightharpoonup From R
 - $q_w = 1/2\sqrt{1 + \text{tr } R}$

$$\mathbf{q}_{xyz} = \frac{1}{4a_{xx}} \begin{pmatrix} r_{32} - r_{23} & r_{13} - r_{31} & r_{21} - r_{12} \end{pmatrix}^{\top}$$

- ightharpoonup To R
 - $R = \exp\left(2\arccos\left(q_w\right) \frac{q_{xyz}}{\|q_{xyz}\|}\right)$
 - i.e. rotate about q_{xyz} with $\theta = 2 \arccos(q_w)$
- ightharpoonup Quaternions are not unique, two solutions for the same R
- ► Numerically stable

Other representations

- Euler angles
 - ▶ three numbers $\theta_1, \theta_2, \theta_3$
 - ightharpoonup rotation about the x, y, or z axes
 - e.g. XYX Euler angles correspond to $R = R_x(\theta_1)R_y(\theta_2)R_x(\theta_3)$
 - lacktriangleright computing Euler angles from R is often numerically unstable and requires special algorithm for each triplet of axes

Other representations

- Euler angles
 - ▶ three numbers $\theta_1, \theta_2, \theta_3$
 - ightharpoonup rotation about the x, y, or z axes
 - e.g. XYX Euler angles correspond to $R = R_x(\theta_1)R_y(\theta_2)R_x(\theta_3)$
 - lacktriangleright computing Euler angles from R is often numerically unstable and requires special algorithm for each triplet of axes
- ▶ 6D representation of rotation
 - represented by the first two columns of R
 - smooth representation
 - used in machine-learning (e.g. output of neural network)

Summary

- ightharpoonup Configuration Space C, DoF
- ▶ Planar rigid body motion SO(2) , SE(2)
- ▶ Spatial rigid body motion SO(3) , SE(3)
- Properties of rotation matrix in SO(2) and SO(3)
- Representation of spatial rotations
 - rotation matrix
 - axis-angle
 - exponential coordinates
 - quaternions
 - Euler angles
 - 6D representation

Laboratories goal

- Start implementing robotics toolbox
- https://robotics-labs.readthedocs.io/
- ▶ Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)
 - $ightharpoonup \exp(\boldsymbol{\omega})$
 - $ightharpoonup \log(R)$
 - $ightharpoonup R^{-1}$
 - **...**

Laboratories goal

- Start implementing robotics toolbox
- https://robotics-labs.readthedocs.io/
- ▶ Utilities to work with SO(2) , SE(2) , SO(3) , SE(3)
 - $ightharpoonup \exp(\boldsymbol{\omega})$
 - $ightharpoonup \log(R)$
 - $ightharpoonup R^{-1}$
 - **•** ...
- Preparation
 - Linux and Conda are recommended
 - ► Install conda
 - Install Python IDE (PyCharm, VSCode)