

Robotics: Denavit-Hartenberg notation

Vladimír Petrík vladimir.petrik@cvut.cz 07.10.2023

Denavit–Hartenberg notation

- Method for assigning frames to links in kinematic chains
- Introduced by Jacques Denavit and Richard Hartenberg in 1955
- Minimal representation
- Sometimes used in robotics

Motivation

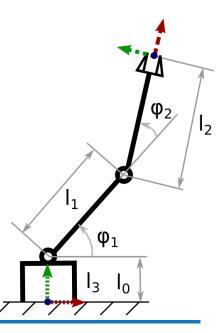
▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \rightarrow T \in SE(2)$

$$\blacktriangleright T_1 = T_y(l_0)$$

•
$$T_2 = R(\varphi_1)T_x(l_1) \leftarrow \text{structure}$$

 $\blacktriangleright T_3 = R(\varphi_2)T_x(l_2)$

$$\blacktriangleright T = T_1 T_2 T_3$$



Denavit–Hartenberg parameters

- Similar structure but for spatial manipulators
- Four parameters for each transformation

T_x(a),
$$T_z(d)$$
, $R_x(\alpha)$, $R_z(\theta)$

- $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- Which of the following equals to T_{DH} ?

1.
$$T_{\mathsf{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$$

ves. $T_x R_x = R_x T_x$

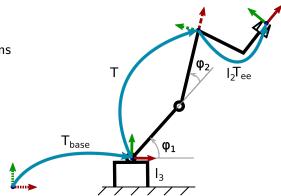
- 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$
- \blacktriangleright Can we create arbitrary SE(3) transformation with DH
 - No, only 4 DoF
 - Designed for open kinematic chains with revolute and prismatic joints
- Coordinate frames need to be placed appropriately
 - z-axis is in axis of rotation/translation
 - x_1 is perpendicular to z_0 and z_1
 - \blacktriangleright x_1 intersects z_0 and z_1

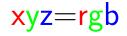
Initial and final transforms

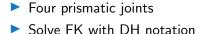
• We cannot create arbitrary SE(3) transformation with DH

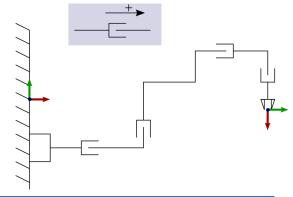
- Mount gripper on different location
- Defining different reference frame
- Usually we define initial and final transforms

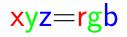
$$T = T_{\mathsf{DH}}^1 T_{\mathsf{DH}}^2 ... T_{\mathsf{DH}}^n$$
$$T_{\mathsf{FK}} = T_{\mathsf{base}} T T_{\mathsf{ee}}$$



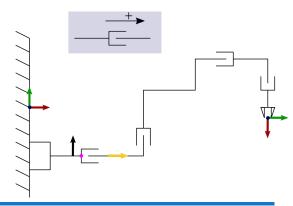


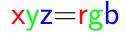




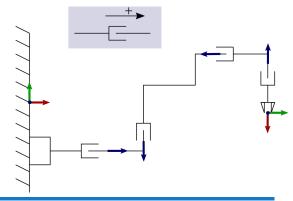


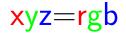
- \blacktriangleright z -axis is in axis of rotation/translation
- ▶ Where will be *z* -axis?
 - 1. black
 - 2. yellow
 - 3. pink





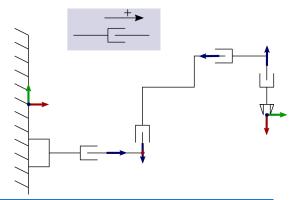
Be careful with orientation

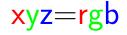




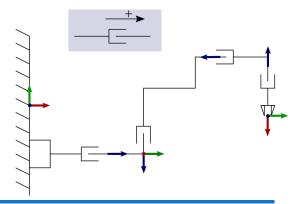
We know:

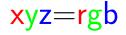
- x_1 is perpendicular to z_0 and z_1
- \blacktriangleright x_1 intersects z_0 and z_1
- \blacktriangleright x -axis of the first frame:
 - 1. axis points out of the screen
 - 2. axis points into the screen
 - 3. both in/out is correct



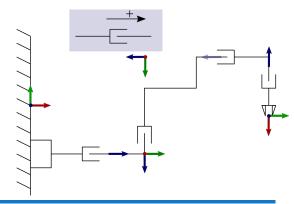


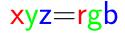
We know x and z, we can determine origin and y



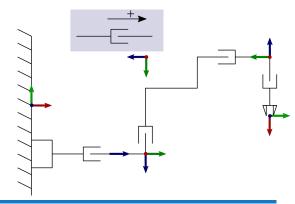


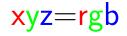
Some frames could be located 'outside' the robot





Only the last frame is missing

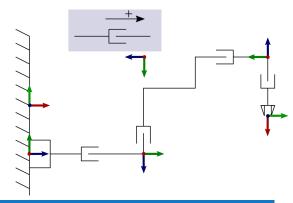


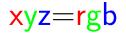


We have 6 frames

- Initial transformation
- 4 DH transformations
- Final transformation

It remains to determine DH parameters

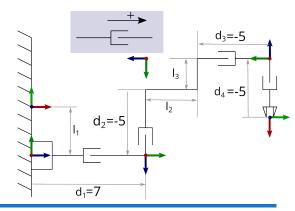




Initial transformation:	$T_y(-l_1)R_y(90^\circ)$
-------------------------	--------------------------

JointType	θ	d	a	α
Р	0	d_1	0	90°
Р	0	$d_2 - l_3$	0	90°
Р	0	$d_3 - l_2$	0	90°
Р	0	d_4	0	0

- We need to include helper frame before the gripper
 - x_1 is not perpendicular to z_0 and z_1
- Final transformation: $R_y(90^\circ)R_x(180^\circ)$



Conclusion

- What is DH notation
 - $\blacktriangleright T_{\mathsf{DH}} = R_z(\theta)T_z(d)R_x(\alpha)T_x(a)$
 - Designed for open kinematic chains with revolute and prismatic joints
- How to assign frames

