- ||CTU
R

UNIVERSITY
IN PRAGUE

Robotics: Path and trajectory generation

Vladimir Petrik

vladimir.petrik@cvut.cz

18.11.2024

Motivation: pick a cube

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
» Compute gripper pose

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
» Compute gripper pose

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
» Compute gripper pose

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube
» Compute gripper pose

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube

> Compute gripper pose

> Solve IK (select one of the solutions, how?)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)

Send robot to selected joint-space configuration
What motion will robot follow?

vvyvyVvVyyvyy

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

vvyvyVvVyyvyy

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

» what is motion? |

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2/24

vvyvyVvVyyvyy

Motion

> Path

> Geometrical description (sequence of configurations)

» No timestamps, dynamics, or control restrictions

> q(s) € Cree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing

QL?Q} Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/24

Motion

> Path

> Geometrical description (sequence of configurations)

» No timestamps, dynamics, or control restrictions

> g(s) € Cree, s € [0, 1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

> Robot configuration in time
> q(t) € Cree, t € [0,T]

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/24

Motion

> Path

> Geometrical description (sequence of configurations)

> No timestamps, dynamics, or control restrictions

» q(s) € Cree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

» Robot configuration in time
> g(t) € Crree, t € [0,T]

1 S Ny

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/24

Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 4/24

Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.

"

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 4/24

Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.

I]_—_X n

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 4/24

Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.

I]_—_X n I]F_

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 4/24

Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
> how to define 5 cm away? By design of handle.
> fix handle orientation to have z-axis pointing towards the object
> gripper orientation to have z-axis pointing out of gripper

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik

5/ 24

Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
how to define 5 cm away? By design of handle.
fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
pre-grasp pose Trp = TRHTI(_(Spre_grasp)

VVVYy VYY

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5 /24

Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
how to define 5 cm away? By design of handle.
fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
> pre-grasp pose Trp = TRHTI(_(Spre_grasp)

> Is path from pre-grasp to grasp safe if dpre grasp is small?

VvV VYVYyYy

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5 /24

Pre-grasp pose

> We can define pre-grasp pose

>

VvV VYVYyYy

>

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
pre-grasp pose Trp = TRHTI(_(Spre_grasp)

> Is path from pre-grasp to grasp safe if dpre grasp is small?

> Is path from pre-grasp to grasp safe if dpre grasp is large?

ﬂ?'?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5 /24

Pre-grasp pose

ga

é Robotics: Path and trajectory generation

/%J‘% Vladimir Petrik 6 /24

Pre-grasp pose

Ijj 197

é Robotics: Path and trajectory generation

/%J‘% Vladimir Petrik 6 /24

Pre-grasp pose

.]j n ;7 l]\——

é Robotics: Path and trajectory generation

/%J‘% Vladimir Petrik 6 /24

Interpolation in joint space

Also called straight-line path, point-to-point path
Start gstart

Q(S) = Qstart + S(ngal - QStart)7 ERS [07 1]

>
>
> Goal ggoal
>
> Easy to compute, well defined

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 7/24

Interpolation in joint space

> Also called straight-line path, point-to-point path
> Start gstart

> Goal ggeal

> q(s) = Gstart + 5(@goal — Gstart), s € [0,1]

> Easy to compute, well defined

» What is the motion of the gripper?

> likely not straight-line (for revolute joints)
> combinations of circular paths (for revolute joints)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 7/24

Interpolation in joint space

R

Robotics: Path and trajectory generation

<
\Jé Vladimir Petrik

8/ 24

Interpolation in joint space

1.0 1.0

: 0.0 : 0.0

—05 -0.5

~10 -1.0
-1.0 —-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 8/24

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), s € [0,1]

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 9 /24

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), s € [0,1]
> rotation R(s) = Retart exp (s10g(ReaiRgoal)) , s € [0, 1]

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 9 /24

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
> position £(s) = tstart + S(tgoal — tstart), s € [0,1]
> rotation R(s) = Retart exp (s10g(ReaiRgoal)) , s € [0,1]

_
-

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 9 /24

Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 10 / 24

Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

> we did not define what is first solution of IK
> let us use the closest solution of IK
> can it happen that closest solution is not close enough?

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 10 / 24

Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

> we did not define what is first solution of IK
> let us use the closest solution of 1K
> can it happen that closest solution is not close enough? yes, let us see an example

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 10 / 24

SCARA robot

| 2
» Analyze kinematics of SCARA
» Structure RRPR

> Self-collisions avoided by joint limits

> +85°

> +120°

> (—330 mm, 5 mm)
> (-20°,1080°)

» Compute FK and IK in zy-plane

285—»+—250 %2007

577

2 Robotics: Path and trajectory generation
Vladimir Petrik

11/ 24

SCARA robot workspace

0.4

0.2 4

E o0+
>

_0.2 -

_0.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
X [m]

/QL?Q/‘ Robotics: Path and trajectory generation
WF

Vladimir Petrik 12 /24

SCARA robot IK

0.4 4

0.2

0.0

y[m]

-0.2

-0.4

-02 -01 00

y[m]

y[m]

T T
01 02 03 04
x [m]

T T T T T
-02 -01 00 01 02 03 04
x [m]

feRe

Robotics: Path and trajectory generation

Vladimir Petrik

13/ 24

Task-space interpolation

0.4

0.2

0.0 A

y [m]

—0.2 1

—0.4

—-0.4 -0.2 0.0 0.2 0.4
x [m]

/"\%?.‘?\%é Robotics: Path and trajectory generation

Vladimir Petrik 14 / 24

Task-space interpolation

0.4

0.2

0.0

y [m]

—0.2

—0.4

-0.4 —-0.2 0.0 0.2 0.4
x [m]

/"\%?.‘?\%é Robotics: Path and trajectory generation

Vladimir Petrik 14 / 24

Task-space interpolation

0.4

0.2

0.0 A

y [m]

—0.2 4

—0.4

—-0.4 -0.2 0.0 0.2 0.4
x [m]

/"\%?.‘?\%é Robotics: Path and trajectory generation

Vladimir Petrik 14 / 24

Task-space interpolation

0.4

0.2 4

E o0
>

_0.2 -

_0.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
X [m]

/"\%?.‘?\%é Robotics: Path and trajectory generation

Vladimir Petrik 14 / 24

Task space interpolation

> Not all solutions of IK are available everywhere
> We need to resolve jumps in configuration space
> To change the configuration we need to pass via singularity

» The task-space interpolation can be used for pre-grasp to grasp path

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 15 / 24

SCARA effect of the last link

0.4

0.2 §

E o0
=

_0.2 -

70.4 -

T T T T T
-0.4 —-0.2 0.0 0.2 0.4
X [m]

é Robotics: Path and trajectory generation

/%r%) Vladimir Petrik

16 / 24

Trajectory from path

» Time scaling s(t), t € [0,T7], s:[0,T] — [0, 1]

> A path and time scaling defines trajectory g(s(t))
» Derivations:

da ¢

ds
> acceleration: ¢ = 995 + 995

> velocity: ¢ =

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 17 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = 5(ggoal — Gstart)

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = 5(ggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = 5(ggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> 5(t) = a1 + 2ast + 3ast?

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

> Path
> position: q(S) = qstart + S(qgoal - qstart)) ERS [07 1]
> VeIOCity: q = é(ngaI - qstart)
> acceleration: ¢ = 5(qggoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> 5(t) = a1 + 2ast + 3ast?
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2ast + 3ast?
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0
> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

> position: q(S) = qstart + S(qgoal - qstart)) ERS [07 1]

> velocity: ¢ = 5(ggoal — Gstart)

> acceleration: § = $(qgoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2ast + 3ast?

> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart 1+ (% - %) (ngal - (Istart)
. 2
> q(t) = (% - 2TLS) (qgoal - qstart>

QL?Q} Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

> pOSitiOﬂI q(s) = qstart + S(qgoal - qstart), ERS [07 1]

> Ve|0City: q = é(qgoal - qstart)

> acceleration: ¢ = 5(qggoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = ay + 2ast + 3azt?

> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart T (% - %) (ngal - (IStart)
. 2
> Q(t) = (% - 2]%) (qgoal - qstart>

> q(t) = (% - %) (qgoal - qstart)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

Straight-line path time scaling

» Path

> pOSitiOﬂI q(s) = qstart + S(qgoal - qstart), ERS [07 1]

> Ve|0City: q = é(qgoal - qstart)

> acceleration: ¢ = 5(qggoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = ay + 2ast + 3azt?

> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart T (% - %) (ngal - (IStart)
. 2
> Q(t) = (% - 2]%) (qgoal - qstart>

> q(t) = (% - %) (qgoal - qstart)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24

3rd order polynomial time scaling

T t T ¢

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 19 /24

Straight-line path time scaling

» Maximum joint velocities:
> t=T/2
P Gmax = %(ngal - qstart)
» Maximum joint acceleration:
> t=0andt="T
P Gmax = Hq%(ngal - QStart)H
P Gmin = — H%(qgoal - QStart)H
» How to use this information?

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 20 / 24

Straight-line path time scaling

» Maximum joint velocities:
> t=T/2
P Qmax = %(ngal - qstart)
» Maximum joint acceleration:
> t=0andt=T
P Gmax = H%(ngal - QStart)H
» Gmin = — H%(qgoal - QStart)H
» How to use this information?

> check if requested motion T is feasible given the velocity/acceleration limits
» find minimum T such that velocity and acceleration constraints are satisfied

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 20 / 24

5th order polynomial

» 3rd order polynomial does not enforce zero acceleration at the beginning and end

> infinite jerk (derivative of acceleration)
» can cause vibrations

» We can use 5th order polynomial

s . .
A A
1 15 10 _ |
8T T2V3
0 >
\/T t
> —
T t T t
ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 21 /24

Trapezoidal time scaling

» Constant acceleration phase
» Constant velocity phase
» Constant deceleration phase

> Not smooth but it is the fastest straight-line motion possible

s s . .
14 v ey : \
Ny E i
q : %
Sy -\
1 : \
§ i | \
! o
T ¢ ta T-t, T
QL?Q} Robotics: Path and trajectory generation
/\J Vladimir Petrik 22 /24

S-Curve time scaling

» Trapezoidal motions cause discontinuous jumps in acceleration
» S-curve smooths it to avoid vibrations

> constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk,
constant deceleration, constant jerk

A
CE T T
2/ | | N,
Ny i | i i €«
> N\
: : ! : ’
(S N T N SR N S S R o U
T t
‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 23 /24

Summary

» Path/Trajectory
> Grasping path generation
> Interpolation in joint space and task space

» Time scaling parameterization

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 24 / 24

