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Motivation: pick a cube

» Detect where the cube is in SE(2) , SE(3)
» Define handle(s) w.r.t. cube

> Compute gripper pose

> Solve IK (select one of the solutions, how?)
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Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)

Send robot to selected joint-space configuration
What motion will robot follow?
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Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common
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Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

» what is motion? |
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Motion

> Path

> Geometrical description (sequence of configurations)

» No timestamps, dynamics, or control restrictions

> q(s) € Cree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
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Motion

> Path

> Geometrical description (sequence of configurations)

» No timestamps, dynamics, or control restrictions

> g(s) € Cree, s € [0, 1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

> Robot configuration in time
> q(t) € Cree, t € [0,T]
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Motion

> Path

> Geometrical description (sequence of configurations)

> No timestamps, dynamics, or control restrictions

» q(s) € Cree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

» Robot configuration in time
> g(t) € Crree, t € [0,T]
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Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.
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Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.
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Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.
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Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
> how to define 5 cm away? By design of handle.
> fix handle orientation to have z-axis pointing towards the object
> gripper orientation to have z-axis pointing out of gripper
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Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
how to define 5 cm away? By design of handle.
fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
pre-grasp pose Trp = TRHTI(_(Spre_grasp)
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Pre-grasp pose

> We can define pre-grasp pose
> e.g. 5 cm away from the object, w.r.t. handle
how to define 5 cm away? By design of handle.
fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
> pre-grasp pose Trp = TRHTI(_(Spre_grasp)

> Is path from pre-grasp to grasp safe if dpre grasp is small?
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Pre-grasp pose

> We can define pre-grasp pose

>

VvV VYVYyYy

>

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
pre-grasp pose Trp = TRHTI(_(Spre_grasp)

> Is path from pre-grasp to grasp safe if dpre grasp is small?

> Is path from pre-grasp to grasp safe if dpre grasp is large?
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Pre-grasp pose
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Pre-grasp pose
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Pre-grasp pose
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Interpolation in joint space

Also called straight-line path, point-to-point path
Start gstart

Q(S) = Qstart + S(ngal - QStart)7 ERS [07 1]

>
>
> Goal ggoal
>
> Easy to compute, well defined
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Interpolation in joint space

> Also called straight-line path, point-to-point path
> Start gstart

> Goal ggeal

> q(s) = Gstart + 5(@goal — Gstart), s € [0,1]

> Easy to compute, well defined

» What is the motion of the gripper?

> likely not straight-line (for revolute joints)
> combinations of circular paths (for revolute joints)
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Interpolation in joint space

R

Robotics: Path and trajectory generation

<
\Jé Vladimir Petrik

8/ 24



Interpolation in joint space
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Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), s € [0,1]
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Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), s € [0,1]
> rotation R(s) = Retart exp (s10g(ReaiRgoal)) , s € [0, 1]
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Interpolation in SE(2) and SE(3)

> Straight-line path in task space
> position £(s) = tstart + S(tgoal — tstart), s € [0,1]
> rotation R(s) = Retart exp (s10g(ReaiRgoal)) , s € [0,1]
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Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?
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Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

> we did not define what is first solution of IK
> let us use the closest solution of IK
> can it happen that closest solution is not close enough?
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Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

> we did not define what is first solution of IK
> let us use the closest solution of 1K
> can it happen that closest solution is not close enough? yes, let us see an example
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SCARA robot

| 2
» Analyze kinematics of SCARA
» Structure RRPR

> Self-collisions avoided by joint limits

> +85°

> +120°

> (—330 mm, 5 mm)
> (-20°,1080°)

» Compute FK and IK in zy-plane

285—»+—250 %2007
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SCARA robot workspace
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SCARA robot IK
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Task-space interpolation
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Task-space interpolation
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Task space interpolation

> Not all solutions of IK are available everywhere
> We need to resolve jumps in configuration space
> To change the configuration we need to pass via singularity

» The task-space interpolation can be used for pre-grasp to grasp path
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SCARA effect of the last link
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Trajectory from path

» Time scaling s(t), t € [0,T7], s:[0,T] — [0, 1]

> A path and time scaling defines trajectory g(s(t))
» Derivations:

da ¢

ds
> acceleration: ¢ = 995 + 995

> velocity: ¢ =
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Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = 5(ggoal — Gstart)
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Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?
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Straight-line path time scaling

» Path

» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)
» 3rd order polynomial time scaling
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Straight-line path time scaling

> Path
> position: q(S) = qstart + S(qgoal - qstart)) ERS [07 1]
> VeIOCity: q = é(ngaI - qstart)
> acceleration: ¢ = 5(qggoal — Gstart)
» 3rd order polynomial time scaling
> 5(t) = ap + art + ast? + ast?
> 5(t) = a1 + 2ast + 3ast?
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0
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» position: q(s) = Gstart + $(@goal — Gstart), s € [0,1]
> velocity: ¢ = $(Qggoal — Gstart)
> acceleration: § = $(qgoal — Gstart)

» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2ast + 3ast?
> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0
> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
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Straight-line path time scaling

» Path

> position: q(S) = qstart + S(qgoal - qstart)) ERS [07 1]

> velocity: ¢ = 5(ggoal — Gstart)

> acceleration: § = $(qgoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = a1 + 2ast + 3ast?

> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart 1+ (% - %) (ngal - (Istart)
. 2
> q(t) = (% - 2TLS) (qgoal - qstart>
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Straight-line path time scaling

» Path

> pOSitiOﬂI q(s) = qstart + S(qgoal - qstart), ERS [07 1]

> Ve|0City: q = é(qgoal - qstart)

> acceleration: ¢ = 5(qggoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = ay + 2ast + 3azt?

> constraints: s(0) = 3(0) =0, s(T) =1, $(T) =0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart T (% - %) (ngal - (IStart)
. 2
> Q(t) = (% - 2]%) (qgoal - qstart>

> q(t) = (% - %) (qgoal - qstart)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 24



Straight-line path time scaling

» Path

> pOSitiOﬂI q(s) = qstart + S(qgoal - qstart), ERS [07 1]
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3rd order polynomial time scaling

T t T ¢
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Straight-line path time scaling

» Maximum joint velocities:
> t=T/2
P Gmax = %(ngal - qstart)
» Maximum joint acceleration:
> t=0andt="T
P Gmax = Hq%(ngal - QStart)H
P Gmin = — H%(qgoal - QStart)H
» How to use this information?
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Straight-line path time scaling

» Maximum joint velocities:
> t=T/2
P Qmax = %(ngal - qstart)
» Maximum joint acceleration:
> t=0andt=T
P Gmax = H%(ngal - QStart)H
» Gmin = — H%(qgoal - QStart)H
» How to use this information?

> check if requested motion T is feasible given the velocity/acceleration limits
» find minimum T such that velocity and acceleration constraints are satisfied
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5th order polynomial

» 3rd order polynomial does not enforce zero acceleration at the beginning and end

> infinite jerk (derivative of acceleration)
» can cause vibrations

» We can use 5th order polynomial
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Trapezoidal time scaling

» Constant acceleration phase
» Constant velocity phase
» Constant deceleration phase

> Not smooth but it is the fastest straight-line motion possible
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S-Curve time scaling

» Trapezoidal motions cause discontinuous jumps in acceleration
» S-curve smooths it to avoid vibrations

> constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk,
constant deceleration, constant jerk
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Summary

» Path/Trajectory
> Grasping path generation
> Interpolation in joint space and task space

» Time scaling parameterization
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