

Robotics: Dynamics of open chain

Vladimír Petrík vladimir.petrik@cvut.cz 25.11.2024

Motivation

- We studied kinematics of open chains
 - Forward kinematics
 - Inverse kinematics
 - Planning of paths/trajectories
- Dynamics of open chains
 - Motion of the robot taking into account forces, torques, and gravity
 - Motion described by the equation of motion
 - Can be used to compute control of the robot
 - It can answer the question when humanoid robot falls down

Motivation

Equation of motion

- Describes the motion of the robot
- Differential equation of the second order
- ▶ For robotics, equation of motion has the form $au = M({m q})\ddot{{m q}} + h({m q},\dot{{m q}})$
 - \blacktriangleright au vector of joint forces/torques
 - M mass matrix
 - \blacktriangleright h vector of Coriolis, gravity and friction terms
 - *h* is often in the form $h = C(q, \dot{q})\dot{q} + g(q)$
 - C Coriolis matrix
 - g effect of gravity

Dynamics tasks

Forward dynamics

- \blacktriangleright Given q, \dot{q} , au compute \ddot{q}
- Why we need it?
- Used for simulation
- How the robot moves for given forces/torques

$$\blacktriangleright \ \ddot{\boldsymbol{q}} = M^{-1}(\boldsymbol{q})(\boldsymbol{\tau} - h(\boldsymbol{q}, \dot{\boldsymbol{q}}))$$

- Inverse dynamics
 - \blacktriangleright Given $oldsymbol{q}$, $\dot{oldsymbol{q}}$, $\ddot{oldsymbol{q}}$ compute au
 - Why we need it?
 - Used for control
 - What forces/torques are needed to move the robot in desired way

$$\blacktriangleright \boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + h(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

Forward dynamics integration - simulation

Explicit Euler Integration

$$\dot{\boldsymbol{q}}_{t+1} = \dot{\boldsymbol{q}}_t + \ddot{\boldsymbol{q}}_t \Delta t \dot{\boldsymbol{p}}_t = M^{-1}(\boldsymbol{q}_t)(\boldsymbol{\tau}_t - h(\boldsymbol{q}_t, \dot{\boldsymbol{q}}_t)) \dot{\boldsymbol{p}}_t \Delta t \text{ - time step, e.g. 0.001 s (unstable for large time steps) }$$

$$\mathbf{P} \ \mathbf{q}_{t+1} = \mathbf{q}_t + \dot{\mathbf{q}}_{t+1} \Delta t$$

Equation of motion derivation

Lagrangian formulation

- Kinetic energy
- Potential energy
- Elegant for simple structures
- Newton-Euler formulation
 - Dynamic equation of rigid body
 - Efficient recursive formulation for forward/inverse dynamics
- Both formulations lead to the same equation of motion

Lagrangian formulation

- Generalized coordinates q
- \blacktriangleright Generalized forces au
- ► Lagrangian $\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - \mathcal{P}(\boldsymbol{q})$ ► Kinetic energy $\mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}})$
 - Potential energy $\mathcal{P}(q)$
- Equation of motion

$$\mathbf{r} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}}$$

- Also called Euler-Lagrange equation with external forces
- Examples:

 τ

- Particle of mass moving vertically in gravitation field
- Planar robot arm

Simulation of PP

Equation of Motion - RR

$$\begin{split} \tau_1 &= & \left(\mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2)\right) \ddot{\theta}_1 \\ &+ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_2 - \mathfrak{m}_2 L_1 L_2 \sin \theta_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \\ &+ (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2), \\ \tau_2 &= & \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_1 + \mathfrak{m}_2 L_2^2 \ddot{\theta}_2 + \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \\ &+ \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2). \end{split}$$

$$\begin{split} M(\theta) &= \left[\begin{array}{cc} \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2(L_1^2 + 2L_1L_2\cos\theta_2 + L_2^2) & \mathfrak{m}_2(L_1L_2\cos\theta_2 + L_2^2) \\ \mathfrak{m}_2(L_1L_2\cos\theta_2 + L_2^2) & \mathfrak{m}_2L_2^2 \end{array} \right],\\ c(\theta,\dot{\theta}) &= \left[\begin{array}{cc} -\mathfrak{m}_2L_1L_2\sin\theta_2(2\dot{\theta},\dot{\theta}_2 + \dot{\theta}_2^2) \\ \mathfrak{m}_2L_1L_2\dot{\theta}_1^2\sin\theta_2 \end{array} \right],\\ g(\theta) &= \left[\begin{array}{cc} (\mathfrak{m}_1 + \mathfrak{m}_2)L_1g\cos\theta_1 + \mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2) \\ \mathfrak{m}_2gL_2\cos(\theta_1 + \theta_2) \end{array} \right], \end{split}$$

Simulation of RRR

Understanding mass matrix

 θ_{2} $\theta_{1} = 0^{\circ}$ $\theta_{2} = 90^{\circ}$ $M^{-1}(\theta) = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 1.5 \end{bmatrix}$ $\theta_{1} = 0^{\circ}$ $\theta_{2} = 90^{\circ}$ $M(\theta) = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$ τ_{1}

- Kinetic energy
 - Point mass $\frac{1}{2}m\dot{x}^2$
 - Robot $\frac{1}{2}\dot{\boldsymbol{q}}^{\top}\tilde{M}(\boldsymbol{q})\dot{\boldsymbol{q}}$
- Mass
 - Point mass m is positive
 - \blacktriangleright $M(\boldsymbol{q})$ is symmetric positive definite matrix
- Point mass in Cartesian coordinates
 - Independent of direction of acceleration
 - Acceleration is scalar multiplication of force
- Mass matrix in generalized coordinates
 - Effective mass depends on the acceleration direction
 - Unit acceleration mapping to torques
 - The same magnitude of acceleration can be achieved by different torques (depending on the direction)

End-effector effective mass

How massy would end-effector feel if we move it by hand? Depends on the direction of force.

• Kinetic energy must be constant: $\frac{1}{2}V^{\top}\Lambda(q)V = \frac{1}{2}\dot{q}^{\top}M(q)\dot{q}$

- $\Lambda(q)$ effective mass of end-effector
- $V = (\dot{x}, \dot{y})^{\top}$ velocity of end-effector
- ▶ Jacobian $V = J(q)\dot{q}$
- $V^{\top} \Lambda(\boldsymbol{q}) V = (J^{-1} V)^{\top} M(\boldsymbol{q}) (J^{-1} V)^{\top} = V^{\top} (J^{-\top} M(\boldsymbol{q}) J^{-1}) V$
- End-effector mass matrix: $\Lambda(q) = J^{-\top}(q)M(q)J^{-1}(q)$

Constrained dynamics

• Robot subject to a set of k velocity constraints

- e.g. closed kinematics chain
- writing with a pen (constant height)
- $\blacktriangleright A(\boldsymbol{q})\dot{\boldsymbol{q}} = 0, A \in \mathbb{R}^{k \times n}$
- Equation of motion

- λ vector of Lagrange multipliers
- ► $A^{\top}(q)\lambda$ force applied against constraints expressed as joint forces/torques
- Lambda can be computed analytically:

$$\boldsymbol{\lambda} = (AM^{-1}A^{\top})^{-1}(AM^{-1}(\boldsymbol{\tau} - h) + \dot{A}\dot{\boldsymbol{q}})$$

Constrained dynamics tasks

- Forward dynamics
 - \blacktriangleright first compute λ
 - \blacktriangleright compute \ddot{q}
- Inverse dynamics
 - \blacktriangleright compute au from given λ and \ddot{q}
 - \blacktriangleright λ defines force against constraints
 - if constraint is in the end-effector space: $J^{\top} \boldsymbol{f} = A^{\top} \boldsymbol{\lambda}$
 - e.g. how much pushing against the table with f_d

$$\boldsymbol{\lambda} = (J^{-\top}A^{\top})^{\dagger}\boldsymbol{f}_d$$

Use of constrained dynamics

Summary

- Dynamics of open chains
- Equation of motion
 - Lagrangian formulation
 - Newton-Euler formulation
- Forward dynamics
- Inverse dynamics
- Constrained dynamics

