

Robotics: Closed kinematics chains

Vladimír Petrík vladimir.petrik@cvut.cz 09.12.2024

Open/Closed kinematic chain

- Open kinematics chains: no loops
- Closed kinematic chains contains loops
- Many closed kinematics chains can be expressed with open kinematics chains

Examples of closed kinematics chain

Closed kinematics chains

- Closed kinematics chains
 - Contain loops
 - Are more difficult to control
 - Typically small workspace
 - Are more difficult to analyze
- Advantages
 - Can be redundantly actuated
 - Mechanical advantage: faster, stronger, or stiffer
- Grübler's formula can be used to determine number of DoF

Grübler's formula

•
$$n_{\mathsf{DoF}} = m \left(L - 1 \right) - \sum_{i=1}^{N} c_i = m \left(L - 1 - N \right) + \sum_{i=1}^{N} f_i$$

- L is number of links including ground
- N is number joints
- m is DoF of rigid body (3 for planar, 6 for spatial)
- c_i number of constrains provided by joint i
- f_i number of freedoms provided by joint i

$$\blacktriangleright f_i + c_i = m$$

 Works for *generic* cases, fails under certain configurations - when joints constrains are not independent

Applications of Grübler's formula

 $n_{\text{DoF}} = m (L - 1 - N) + \sum_{i=1}^{N} f_i$ m - body DoF, L - number of links, N - number of joints, f_i - joint DoF

Examples of kinematics chains

Open kinematics chains

- Structure RR, Task space \mathbb{R}^2
- Structure RRR, Task space SE(2)
- Closed kinematics chains
 - Structure RRRR, Task space \mathbb{R}^1
 - Structure RRRRRR, Task space SE(2)
 - Structure RRRP, Task space \mathbb{R}^1

Spatial inverse kinematics for Mitsubishi RV6S

