

Robotics: Introduction to AI in robotics

Vladimír Petrík vladimir.petrik@cvut.cz 18.12.2023

Motivation

- > You know how to control robot to reach the target pose (SE3)
- Where to get the pose for the given task? Vision

Static objects reaching

Scene cam:

Robot cam:

Static objects reaching

Scene cam:

6D pose estimation

$$T_{CO}, M = f_{\mathsf{estimate}}(I, K, \mathcal{D})$$

- ► I image
- K camera matrix
- $\blacktriangleright \mathcal{D}$ database of meshes
- $\blacktriangleright \ M \in \mathcal{D} \text{ mesh of the object}$

6D pose tracking

$$T_{CO}^{i+1} = f_{\mathsf{track}}(I, K, M, T_{CO}^i)$$

- ► I image
- K camera matrix
- \blacktriangleright *M* mesh

Why is 6D pose estimation difficult?

¹https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html

6D pose estimation pipeline

Object detection in image

Coarse pose estimation

Pose refinement

Object detection

Object detection

- Goal: detect object in image
 - mask
 - bounding box
 - object instance id
 - confidence of prediction
- Neural network Mask R-CNN
 - needs good training data
 - annotated images
 - synthetic images

Trained Mask R-CNN results

Object detection without retraining

- Segment Anything Model (SAM)
 - segment any object, in any image, with a single click
 - dataset of 10M images, 1B masks

Universal segmentation model

SAM results

SAM results

Mesh model from segmentation mask - CNOS

CosyPose

Consistent multi-view multi-object 6D pose estimation

Coarse pose estimation

- Input: image crop and mesh model²
- Goal: estimate 6D pose
- Approach:
 - render and compare strategy
 - neural network
 - initial position is estimated from camera matrix
 - initial orientation is identity
- Training
 - synthetic and real data
 - 10 hours on 32 GPUs

²Image based on: https://arxiv.org/pdf/2204.05145.pdf

Coarse pose estimation results

Refiner

- The same render-and-compare strategy
- Network learns to predict small corrections
- Evaluated iteratively
- Another 10 hours on 32 GPUs

Refiner results

Refiner results

BOP challenge

- BOP: Benchmark for 6D Object Pose Estimation
- Main benchmark/competition for 6D pose estimation
- Tasks on seen objects
 - Model-based 2D detection/segmentation of seen objects [new in 2022]
 - Model-based 6D localization of seen objects
- Tasks on unseen objects [new in 2023]
 - Model-based 2D detection/segmentation of unseen objects
 - Model-based 6D localization of unseen objects

CosyPose at BOP challenge

#	Method	Year	PPF	CNN	models	Train. im.	type	Test im.	Refine.	Avg.	LM-O	T-LESS	TUD-L	IC-BIN	ITODD	HB	YCB-V	Time
1	CosyPose-ECCV20-Synt+Real-1View-ICP	2020	No	Yes	3/dataset	RGB	Synt+real	RGB-D	RGB+ICP	0.698	0.714	0.701	0.939	0.647	0.313	0.712	0.861	13.743
2	Koenig-Hybrid-DL-PointPairs		Yes	Yes	1/dataset	RGB	Synt+real	RGB-D	ICP					0.430	0.483			0.633
3	CosyPose-ECC 20-Syn Ceal-1View		No	Yes	3/dataset	RGB	Synt+real	RGB	RGB	0.637					0.216			0.449
4	Pix2Port		No	Yes	1/object	RGB	Synt+real	RGB-D	ICP	0.591				0.390				4.844
5	Cosyl	2022	10	Yes	C'tataset	RGB	PBConly	RGP	191	0.570	Q 633				0.216	0.656	0.574	0.475
6	Vida Sors BUP	201	P.O.	e,	DVE	rai	гве	SL	we	LUIO	0.582				0.435	0.706	0.450	3.220
7	CDPN BOTTOTO &		No	Yes	1/object	RGB	Synt+real	RGB-D	ICP	0.568		0.464		0.450	0.186			1.462
8	Drost RZUZU	20 🕑	os	vΡ	ose-	ECC\	/20-5	vnt	+Rea	I-1V	'iew	-ICP	0.851	0.368				
9	CDPNv2 P20 (PBR-only mp)	2020	No	Yes	1/object	RGB	PBR only	RGB-D	ICP	0.534	0.630	0.435		0.450	0.186			1.491
10	CDPNv2_B	2030	No	Yes	JAB	RGB	Synt+mal	RGB	Ntior	11227	h1824	ATT	0.772	0.473	C102	0.722		0.935
11	Drost-CVPR10-3D-Edges	2019	ųĮ	NoL	ubbe	, jusi	in cu	ipei	iuer,	Nuu	meu	Aut	, y, j	usej	וַאַוּכ	0.623	0.316	
12	Drost-CVPR10-3D-Only	20 🥑	os	vPo	ose:	Cons	isten	t m	ulti-v	iew	mul	ti-ok	bject	: 6D	pos	e ^{0.615}	0.344	7.704
13	CDPN_BOP19 (RGB-only)	2020	No	Yes	1/object	ECC	V/20	RGB	No	0.479		0.490	0.769		0.067		0.457	0.480
14	CDPNv2_BOP20 (PBR-only&RGB-only)	205	รม	Пo	uon,	ELC	v ₈ ∠0,	RGB	No	0.472	0.624	0.407		0.473			0.390	0.978
15	leaping from 2D to 6D		No	Yes	1/object	RGB	Synt+real	RGB	No	0.471		0.403		0.342	0.077		0.543	0.425
16	EPOS-BOP20-PBR	2020	No	Yes	1/dataset	RGB	PBR only	RGB	No	0.457	0.547	0.467		0.363	0.186		0.499	1.874
17	Drost-CVPR10-3D-Only-Faster	2019	Yes	No					ICP	0.454	0.492	0.405	0.696		0.274			1.383
18	Félix&Neves-ICRA2017-IET2019	2019	Yes	Yes	1/dataset	RGB-D	Synt+real	RGB-D	ICP	0.412	0.394				0.069			
19	Sundermeyer-IJCV19+ICP	2019	No	Yes	1/object	RGB	Synt+real	RGB-D	ICP	0.398		0.487	0.614	0.281	0.158	0.506		0.865
20	Zhigang-CDPN-ICCV19	2019	No	Yes	1/object	RGB	Synt+real	RGB	No	0.353	0.374	0.124				0.470	0.422	0.513
21	PointVoteNet2		No	Yes	1/object	RGB-D	PBR only	RGB-D	ICP	0.351		0.004		0.264	0.001	0.556	0.308	
22	Pix2Pose-BOP20-ICCV19	2020	No	Yes	1/object	RGB	Synt+real	RGB	No	0.342	0.363	0.344	0.420	0.226	0.134	0.446	0.457	1.215
23	Sundermeyer-IJCV19	2019	No	Yes	1/object	RGB	Synt+real	RGB	No	0.270	0.146	0.304	0.401			0.346		0.186
24	SingleMultiPathEncoder-CVPR20	2020	No	Yes	1/all	RGB	Synt+real	RGB	No	0.241	0.217		0.334		0.067		0.289	0.186
25	Pix2Pose-BOP19-ICCV19	2019	No	Yes	1/object	RGB	Synt+real	RGB	No	0.205	0.077		0.349			0.200	0.290	0.793
26	DPOD (synthetic)	2019	No	Yes	1/scene	RGB	Synt	RGB	No	0.161	0.169	0.081	0.242	0.130	0.000	0.286		0.231

CosyPose variants: FocalPose, FocalPose++

CosyPose variants: RoboPose

CosyPose limitations

Training time

For each dataset

- 10 hours on 32 GPUs for coarse estimator
- 10 hours on 32 GPUs for refiner

Coarse pose estimation often not accurate enough for refinement

MegaPose

6D Pose Estimation of Novel Objects via Render & Compare

MegaPose - coarse estimation

- Re-casted estimation into classification
- Poses sampled randomly [original]
- Poses uniformly distributed [new]
- Allows multi-hypothesis evaluation

MegaPose - refiner

- Multi-view rendering
- Render and compare
- Iterative refinement

MegaPose - training data

- Generalization to unseen object achieved by big training dataset
 - only synthetic dataset
 - thousands of objects
 - 2 millions of images
- Training
 - 100 hours on 32 GPUs
 - trained only once, models are available

MegaPose - results

HappyPose

Open-source toolbox for 6D pose estimation

HappyPose

- Developed in AGIMUS project (https://github.com/agimus-project/happypose)
- Re-implements CosyPose and MegaPose
- Packaging, testing, documentation
- https://github.com/agimus-project/winter-school-2023/

			2023 2023
따 README 화 BSD-2-Clause license	Ø	∷≡	BOP Challenge 2023 Award The Best Open-Source Method Task 4. Model-based 6D localization of unseen objects
НарруРоѕе			HegePoor Elliot Maker, Mederic Forumy, Lucas Manuselli, Yann Labbé thi haranatianal Wonkingon Recovering 60 Object Poor, ICCV 2023
🕥 Tests with conda passing 💭 Tests with pip passing 💭 Tests with poetry + Coverage passing 💭 Build and Deploy boo	k passing		· · · · / 2

Applications

PCB manipulation based on the estimated pose

euROBIN taskboard pose estimation

Model-based object pose tracking

Object pose tracking

Converged

> Assumptions: object detected, matched with model, initial pose given

Keypoint matching approach

Model

- 3D points on mesh
- descriptors of points
- Method
 - 3D-2D matching
 - minimize reprojection error
- Efficient and robust for rich textures

MegaPose as tracking?

Region based tracking

- Mesh model as input
- Probabilistic silhouette alignment (Newton's method)
- Assumes foreground and background colors sufficiently different
- Robust to occlusion, efficient

Region based tracker

Object localization and tracking

Combines slow localization and fast tracker

OLT timeline

OLT delay

CosyPose only

OLT (ours)

Control

Optimal control solver

$$\underset{\boldsymbol{x}_{1},...,\boldsymbol{x}_{M}}{\underset{\boldsymbol{x}_{1},...,\boldsymbol{x}_{M}}{\arg\min}} \sum_{i=0}^{M-1} l_{i}(\boldsymbol{x}_{i},\boldsymbol{u}_{i}) + l_{M}(\boldsymbol{x}_{M}),$$
s.t. $\boldsymbol{x}_{i+1} = f(\boldsymbol{x}_{i},\boldsymbol{u}_{i}), \forall i \in \{0,...,M-1\},$

$$\boldsymbol{x}_{0} = \hat{\boldsymbol{x}},$$
(1)

Ricatti linearization

$$\boldsymbol{\tau}(\boldsymbol{x}) = \boldsymbol{\tau}_0 + K_0(\boldsymbol{x} - \boldsymbol{x}_0) \tag{2}$$

Costs for optimal control

Tracking cost

$$\left\|\log\left(\left(T_{\mathsf{BC}}(\boldsymbol{q}_k)T_k\right)^{-1}T_{\mathsf{BC}}(\boldsymbol{q})T_{\mathsf{ref}}\right)\right\|^2\tag{3}$$

▶ is solution unique?

Regularizations:

$$(\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}})^{\top} Q_x (\boldsymbol{x} - \boldsymbol{x}_{\mathsf{rest}})$$
 (4)

$$(\boldsymbol{u} - \boldsymbol{u}_{\text{rest}}(\boldsymbol{x}))^{\top} Q_u \left(\boldsymbol{u} - \boldsymbol{u}_{\text{rest}}(\boldsymbol{x})\right)$$
(5)

OLT with control for tracking

Static objects reaching

Scene cam:

Robot cam:

Summary

- 6D pose estimation
 - Object detection
 - CosyPose
 - MegaPose
 - FocalPose
 - RoboPose
- ► 6D pose tracking
- Object localization and tracking for control

Final work

- No consultation on Tuesday
- ▶ (Soft) Deadline for submission is 14.01.2024
 - -1p every 72h
- Necessary to evaluate before the exam

