

Robotics: Introduction to AI in robotics

Vladimír Petrík vladimir.petrik@cvut.cz 16.12.2024

Temporal consistency

- Use smoothing and mapping with CosyPose to achieve temporal consistency
- Probabilistic smoothing
 - occlusions
 - jumps
- Bachelor Thesis of Vojtěch Přibáň, published in IEEE RA-L journal

Approach

Covariance model

Decoupled	Visibility dependent	frame C'	recall	precision
\checkmark	\checkmark	\checkmark	0.571	0.609
\checkmark	×	\checkmark	0.570	0.608
\checkmark	\checkmark	×	0.531	0.574
×	\checkmark	N/A	0.483	0.549
×	×	N/A	0.498	0.542

Qualitative static objects tracking

Qualitative dynamic objects tracking

Robot control architecture

Qualitative robot tracking

Geometrical consistency for object pose estimation from images

Image based robotic manipulation

Geometrical consistency for object pose estimation from images

- Image based robotic manipulation
- Pose estimation from single RGB image

Geometrical consistency for obje images

- Image based robotic manipulation
- Pose estimation from single RGB image

Geometrical consistency for object pose estimation from images

- Image based robotic manipulation
- Pose estimation from single RGB image
- Physical consistency

Geometrical consistency for obje images

- Image based robotic manipulation
- Pose estimation from single RGB image
- Physical consistency
- Bachelor Thesis of Martin Malenický, submitted to IEEE RA-L journal

Approach

Gradient descent optimization with derived analytical gradients

Visualization of optimization

Quantitative experiments

- Real BOP datasets:
 - YCB-V
 - HOPE-Video
 - T-LESS
- Synthetic datasets:
 - YCB
 - T-LESS

Quantitative experiments

T-LESS

Real BOP datasets:		real datasets	synthetic datasets
 YCB-V HOPE-Video T-LESS Synthetic datasets: 	MegaPose Ours	0.71 0.80	0.76 0.94
	Ours improovement [%]	12.7	23.7
YCB			

Visualization of optimization

Grasping example

MegaPose

Ours

Summary

- Temporal consistency is important for control
- Physical consistency improves accuracy

