

#### Robotics: Introduction to AI in robotics

Vladimír Petrík

vladimir.petrik@cvut.cz

05.01.2025

#### Optimal control - Model Predictive Control

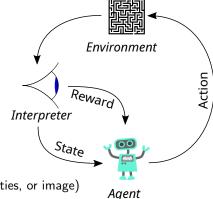
- lacktriangle Find optimal control sequence  $m{u}_0, m{u}_1, \dots, m{u}_T$  to minimize cost function J
  - $m u^* = rg \min_{m u_0} \ J(m x_0,\dots,m x_T,m u_0,\dots,m u_T) \ ext{s.t.} \ m x_{t+1} = f(m x_t,m u_t)$
  - $ightharpoonup x_t$  is state of the system at time t
  - ightharpoonup u is control (torque, velocity,  $\ldots$ )
  - $m{x}_{t+1} = f(m{x}_t, m{u}_t)$  is dynamics/simulation of the system
- Cost function:

$$J = \sum_{t=0}^{T-1} l(\boldsymbol{x}_t, \boldsymbol{u}_t) + l_T(\boldsymbol{x}_T)$$

- ▶ *l* is cost function at time t
- $ightharpoonup l_T$  is terminal cost function
- ightharpoonup T is time horizon
- Use numerical optimization to solve the minimization problem
  - $\blacktriangleright$  dynamics (f) and costs  $(l, l_T)$  needs to be differentiable

### Reinforcement learning

- Modeled as Markov Decision Process
- Agent interacts with environment
- Agent receives reward for each action/state
- Goal is to find policy that maximizes reward in time
- ► Stochastic policy:  $a \sim \pi_{\theta}(s)$ 
  - a is action (e.g. torque)
  - $\triangleright$  s is state of the system (e.g. joint angles and velocities, or image)
  - $\blacktriangleright$   $\pi_{\theta}$  is policy parameterized by  $\theta$
- lnstantaneous reward: r(s, a)
- lacksquare Expected return of the policy:  $R = \mathbb{E}_{a_t \sim \pi_\theta(s_t)} \left[ \sum_t r(s_t, a_t) \right]$  s.t.  $s_{t+1} \sim f(s_t, a_t)$
- Goal: arg max R
- ► Compare to MPC:  $\underset{\cdot}{\operatorname{arg\,min}} J$  s.t.  $\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t, \boldsymbol{u}_t)$  $\boldsymbol{u}_1,...,\boldsymbol{u}_T$





#### Policy gradient

- ightharpoonup Policy  $\pi_{\theta}$  is parameterized by  $\theta$
- ls used to sample action a given state s:  $a \sim \pi_{\theta}(s)$
- Gradient descent algorithm:  $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} R(\pi_{\theta})$ 
  - ightharpoonup heta parameterizes policy  $\pi_{\theta}$
  - $ightharpoonup \alpha$  is learning rate

  - ightharpoonup expectation over trajectories au sampled by following policy  $\pi_{\theta}$
  - in practise expectation is approximated by sampling a lot of trajectories (millions)
  - why we need stochastic policy?
- Can we apply millions of trajectories to real robot?
- We need fast and accurate simulation of robots
  - Gazebo
  - NVIDIA Isaac Sim

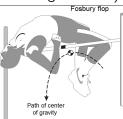
## **Example of RL**



#### Reward shaping

- Finding solution to RL problem is hard
  - sparse reward
  - local minima
  - long training time
- Reward shaping
  - add additional reward to the original reward
  - additional reward is designed to guide learning and avoid local minima
  - engineering work
- Is there a better solution? Learning from demonstration.
- Example from high-jump (Fosbury flop 1968 gold medal)





# Offline reinforcement learning - Learning from demonstration

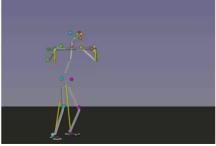
- Collect data from real robot guided by the operator
- ► Pre-Train policy on collected data
- Optionally, fine-tune policy in simulation/ on real robot
- ► How to pre-train policy?
  - behavior cloning supervised learning

  - diffusion policy supervised learning

#### Learning from video

- Instructional videos are widely available on YouTube
- Can we learn from them?
- ▶ Depends on the task/video, e.g. if human is visible
  - we can extract human pose from video
  - we can extract the manipulated object pose
  - we can extract interaction forces





#### Learning tool manipulation from instructional video

## Learning to Use Tools by Watching Videos



Input: instructional video from YouTube



Output: tool manipulation skill transferred to a robot