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Temporally Consistent Object 6D Pose Estimation
for Robot Control

Kateryna Zorina1∗, Vojtech Priban1∗, Mederic Fourmy1, Josef Sivic1 and Vladimir Petrik1

Abstract—Single-view RGB object pose estimators have
reached a level of precision and efficiency that makes them
good candidates for vision-based robot control. However, off-
the-shelf methods lack temporal consistency and robustness that
are mandatory for a stable feedback control. In this work, we
develop a factor graph approach to enforce temporal consistency
of the object pose estimates. In particular, the proposed approach:
(i) incorporates object motion models, (ii) explicitly estimates
the object pose measurement uncertainty, and (iii) integrates the
above two components in an online optimization-based estimator.
We demonstrate that with appropriate outlier rejection and
smoothing using the proposed factor graph approach, we can
significantly improve the results on standardized pose estimation
benchmarks. We experimentally validate the stability of the
proposed approach for a feedback-based robot control task
in which the object is tracked by the camera attached to a
torque controlled manipulator. Index Terms—Visual Tracking,
Computer Vision for Automation

I. INTRODUCTION

S INGLE view object pose estimation from an RGB camera
has made significant progress in recent years [1] e.g., by

using the render-and-compare approach [2], [3]. Our motiva-
tion is to use object pose estimates for feedback-based robot
control, for example, for visual tracking or an object hand-
over from a human to a robot. However, pose predictions
are often inconsistent in time: some estimates are missing
or outliers occur, as shown in Fig. 1. These inconsistencies
have a significant impact on the safety and robustness of
feedback robot control, as incorrect pose predictions can lead
to unstable behavior. For example, incorrect pose estimates
may place an object suddenly 10 cm away or incorrectly
estimate that orientation suddenly changes by 180 degrees due
to symmetries, and cause the controller to generate incorrectly
large desired robot torques leading to dangerous motion.
Object trackers [4], [5] provide consistent poses but may fail
if objects are occluded or out of view.

To address these issues, in this paper, we build on advances
in Simultaneous Localization and Mapping (SLAM) [6] and
develop a probabilistic smoothing approach to track the motion
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Fig. 1: Mustard bottle object pose estimates from images.
The plot (bottom) shows the angular distance between the
estimated pose and a fixed reference frame. The shown objects
are static, and therefore the distance should be constant. The
red dots show the per-frame estimates computed by an object
pose estimator CosyPose [2]. Filtered predictions computed
by our method are shown in green. The corresponding red
and green contours in the images (top) were computed by
reprojecting the object model using the estimated pose. In
the first shown frame (left), both predictions are correct and
overlap. However, in more difficult scenarios (middle and
right) the per-frame estimates (red) are incorrect and would
cause instability in the control. Our approach (green) is correct
even in these challenging partially occluded scenarios.

of objects based on a stream of images captured by a camera
mounted on a robot arm. The proposed approach allows us to
maintain a probabilistic temporally consistent dynamic world
model consisting of object poses. Temporally consistent poses
are predicted from the world model and are safe to use in the
robot control loop. The probabilistic smoothing approach al-
lows us to address the following challenges: (i) Missing object
detections are predicted by the model (via a motion model)
to maintain temporal consistency; (ii) Outlier rejection is
implemented to maintain temporal consistency. (iii) Multiple
instances of the same object are tracked separately in the
world model so that the robot knows which instance is tracked;
and (iv) Discrete object symmetries are tracked separately to
predict temporally consistent poses.
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In summary, this paper has the following contributions:
(i) we present a probabilistic smoothing approach for tem-
porally consistent object pose tracking suitable for feedback-
based robot control; (ii) we evaluate our approach on a
standard real video dataset with static objects and on syn-
thetically rendered dataset with static and dynamic objects -
we achieve superior performance on all evaluated datasets;
(iii) we demonstrate the proposed smoothing approach in a
robot object tracking application with a Franka Emika Panda
manipulator - we experimentally show that our approach leads
to robust tracking in situations where per-frame estimation
fails. Our code is open-source available at https://github.com/
priban42/temporal pose.

II. RELATED WORK

Object pose estimation. Model-based object pose estimation
is one of the core computer-vision challenges with a wide
range of applications for robotics and AR/VR [7], [8]. The
problem is most often decomposed into two stages: 2D image
detection, which provides object-labeled bounding boxes and
masks, followed by a pose estimation for each individual
detection. Learning methods currently dominate the standard-
ized benchmarks for both steps [1]. A more recent challenge
addresses generalizability to objects unseen during training,
both for detection [9] and pose estimation [3], [10], [11],
[12]. Used by some of the leading methods, the “render-and-
compare” approach [13], [2], [3], [12] refines an initial guess
by predicting object pose updates. Working with videos, this
method has been shown to be competitive with the state-of-
the-art single-view object pose tracking [4], [14], [15], [12].

However, the single-view pose estimation problem is inher-
ently challenging for several reasons. For RGB only methods,
the geometry of pinhole projection creates a high uncertainty
in the camera-to-object distance. Poses of objects can be ill-
defined due to object symmetries (e.g. a bottle) or partial
occlusion (e.g. a cup with a hidden handle). Higher uncertainty
may also occur in real-world experiments, e.g. if the model is
trained with insufficient data augmentation [16]. With model-
based object pose estimators performance improving rapidly,
we propose a method that uses off-the-shelf object pose
estimators for fast and robust object tracking.
Multiview object pose estimation. In robotics, it is common
to have a multi-camera setup [5] or a camera mounted on the
robot [17]. This setup can be leveraged by aggregating infor-
mation across views and time to create a consistent estimate of
both the camera/object poses and of the object shapes. Com-
monly used representations include parametric surfaces [18],
[19], [20], [21], volume based representations [22], [23] or
latent codes [24], [25], [21].

In many practical industrial scenarios, it may be reasonably
assumed that object models are available before starting the
tracking process. SLAM++ [26] is the first depth-based object
SLAM system and formulates the estimation using a proba-
bilistic pose graph back-end. SimTrack [5] proposes a tightly
integrated RGB-D system for robot/object pose detection and
tracking. Others directly tackle the inherent pose ambiguity
of image-based pose estimation, e.g., [27] explicitly trains a

single view model that predicts a set of pose hypothesis that
are resolved over different views using a max-mixture formu-
lation. The work [28] fuses probabilistic keypoint predictions,
using the known symmetries of the object. These methods
require to train a dedicated ”front-end” which does not clearly
shows a potential for generalization. Drawing inspiration from
structure-from-motion pipelines, CosyPose [2] addresses the
single-view pose data association problem by designing a
symmetry-aware RANSAC [29] followed by bundle adjust-
ment [30] and is agnostic to the single view pose estimator.
We propose to address the object pose ambiguities by tracking
simultaneously the multiple symmetry modes of the objects in
the scene.
Temporally consistent moving object estimation. In previ-
ously mentioned SLAM-like systems, the objects are assumed
to be static in the environment. A natural but challenging
extension to these methods is to allow multi-object live scene
reconstruction with dynamic objects [31], [32], [33], [34], [35].
To improve the geometric consistency of the scene, Dynamic
SLAM [36] is able to detect sparse landmarks moving with
the same underlying rigid body motion model and include
this information in a factor-graph-based optimization. Motion
models can also provide regularization to filter-based object
pose trackers, either by penalizing large pose updates [4] or
by estimating a higher-order state like the object twist [37].
We propose to estimate the pose and twist of multiple objects
using a factor graph.

III. TEMPORALLY CONSISTENT POSE ESTIMATION

Problem formulation. Our goal is to track the SE(3) pose of
an object with a moving calibrated camera rigidly attached to
the robot end effector, as shown in Fig. 2-A. To achieve that,
we need to estimate the pose of i-th object T k,i

O ∈ SE(3) at
time k. The poses are expressed in the common reference
frame R. Inputs to our method are the stream of images
captured by the camera and the corresponding camera poses
measured by the forward kinematics of the robot. These
measurements are fused into a single probabilistic estimation
problem that finds the optimal trajectory of the camera and the
object poses, as shown in Fig. 2-B. The main technical chal-
lenges are: (i) Achieving fast joint optimization of object poses
over time while considering the uncertainties of the object
pose measurements together with object motion models, which
we address using a factor graph approach; (ii) Appropriate
modelling of the measurement uncertainty of object pose, for
which we develop a model that captures the difficulty of depth
estimation from the RGB image; and (iii) Outlier rejection
and data association, which we address by comparing the
incoming measurements with the estimated pose distributions
of the tracked objects. The details follow.
Factor graph. We formulate the temporally consistent pose
estimation task as a weighted nonlinear least squares problem
following the factor graph approach [38]. Under the assump-
tion of conditionally independent measurements corrupted by
Gaussian noise, the optimal sequence of object and camera
poses is obtained by solving:
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Fig. 2: Overview. Our goal is to estimate the poses of objects in time with respect to the reference frame R as shown in
figure a. To achieve this, we use measurements at a time step k of the camera pose T̃ k

C and the object pose T̃ k,A
CO , where A is

the label of the object. Both objects and the robot are moving in time, as illustrated by purple arrows. Our approach maintains
the probabilistic world representation of the object poses as visualized in figure b, where the ellipsoids represent the poses
uncertainty. This uncertainty is used to filter outliers and predict only confident poses. The map is maintained through the
factor graph shown in figure c, where the green factors represent the motion model, the red factors represent the observations
of the object pose in the camera, and the black factors represent the camera pose computed by forward kinematics. Note that
multiple objects could be tracked simultaneously, as shown by the two-object factor graph in the figure c. Thanks to the motion
model, the poses of the objects can be extrapolated to the future (figures b and c) to resolve missing measurements due to,
e.g., sudden occlusion.

χ∗ = argmin
χ

τ∑
k=τ−H

∥∥rkC∥∥2ΣC︸ ︷︷ ︸
camera pose factors

+

N∑
i=1

τ∑
k=τ−H

δk,i
∥∥∥rk,iO

∥∥∥2
ΣO︸ ︷︷ ︸

object pose factors

+

N∑
i=1

τ∑
k=τ−H+1

∥∥∥rk−1:k,i
M

∥∥∥2
ΣM︸ ︷︷ ︸

motion model factors

,

(1)

where index i iterates over all N objects, index k represents
time on the fixed time horizon H from the time of the last
measurement τ , rX is the vector of residual errors weighted
by covariance matrix ΣX for X ∈ {C,O,M}, representing
the camera C, the object O, and motion model M . Term
δk,i is a binary “occlusion” term that accounts for a missing
measurement of object i in frame k, e.g., caused by an
occlusion or a significant motion blur. We minimize the above
cost over the set of variables χ, which consists of object and
camera poses over time time, denoted as T k,i

O for object i at
time k and T k

C for camera pose at time k. The intuition is that
(i) the camera pose factors regularize the camera pose to stay
close to the pose measured by robot’s forwards kinematics;
(ii) the object pose factors regularize the object pose to stay
close to the measured pose w.r.t. the camera, and (iii) the
motion model factor captures the motion of the object, i.e. the
change of the pose and its uncertainty over time.

To account for this inequality, the residuals are scaled
by covariance matrices that represent our confidence in the
measurements. The residuals are scaled by covariance matrices
that represent our confidence in the measurements. The com-
putation of the residuals and the corresponding covariances is
described next.
The camera pose measurement factor. We perform hand-
eye calibration using the OpenCV library [39]. Therefore the
camera pose residual can be computed by comparing the SE(3)

distance between the estimated value and the corresponding
measurement, i.e., rkC = Log((T k

C)
−1T̃ k

C) , where symbol˜rep-
resents the measurement, here computed by forward kinemat-
ics, and Log is the logarithm mapping from SE(3) group [40].
The covariance of the camera pose factor is assumed to be di-
agonal in the form ΣC = diag(σ2

Ct, σ
2
Ct, σ

2
Ct, σ

2
Cr, σ

2
Cr, σ

2
Cr),

where σ2
Ct represents the translational variance and σ2

Cr is the
rotational variance.
The object pose measurement factor. To estimate the pose
of the object from the input RGB image we use CosyPose [2].
CosyPose uses Mask-RCNN [41] to detect known objects
bounding boxes, masks, and labels in the image. For each
image, the render-and-compare strategy is used to estimate the
spatial pose of the object in the camera frame based on the 3D
mesh retrieved from the database based on the predicted object
identity labels. The residual error for the i-th object in the k-
th frame (time) is computed as rk,iO = Log((T k,i

O )−1T k
C T̃

k,i
CO) ,

where T̃ k,i
CO is the pose of the i-th object predicted by the

CosyPose from the input frame k, T k,i
CO is the estimated

temporally consistent pose of the object in frame k and T k
C

is the estimated temporally consistent pose of the camera at
time k.

To compute the object pose residual, we need to resolve
data association between the variables (i.e. object poses T k,i

O )
and the CosyPose measurements (i.e. T̃ k,i

CO). This is done
as follows. First, we select all variables that correspond to
the predicted object label. From this set of variables, we
choose the closest one based on the Mahalanobis distance
considering the estimated covariance of the measurement. If
the translation and rotation distances are below the manually
specified thresholds, denoted τoutlier t and τoutlier r, we associate
the measurement with the variable by creating a corresponding
factor in the graph. Otherwise, a new variable is created. This
approach creates a robust cost function, enables us to filter out
outliers, and track multiple instances of the same object class
or various discrete symmetries of the same object.

We observe that the covariance of the CosyPose prediction
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Fig. 3: Measurement covariance model. Visualization of the
translation covariance model for the object pose estimations.
Consider two objects (red and purple) whose projection on
the image plane (dotted line) is shown in red and purple,
respectively. The size of the covariance ellipsoid depends on
the size of the object in the image plane. The uncertainty is
higher in the direction of ray that points towards the object,
mitigating the fact that the depth estimation is more difficult
from monocular measurements.

depends on the object size in the image space and that the
uncertainty is higher in the direction of the ray that points
from the camera towards the object center, as shown in
Fig. 3. This is caused by ambiguity in depth estimation,
where large changes in the depth of the object may have
only a small effect on the visual appearance of the object.
Therefore, we define the object translation covariance model to
deal with this increased uncertainty along the depth direction.
In particular, we define a new coordinate frame C ′, whose
position corresponds to the original camera frame and the
z-axis points towards the object. The translation covariance
ΣOt of the object pose measurement is defined in the C ′

frame and we transform it into the object frame O as:
ΣOt = ROC′ΣC′tR

T
OC′ , where ROC′ is the rotation matrix

that rotates vector from frame C ′ to the frame O. The
translation object covariance matrix in the C ′ frame is defined
as ΣC′t = diag(σ2

C′xy(npx), σ
2
C′xy(npx), σ

2
C′z(npx)), where

the individual variances depend on the number of object pixels
observed in the image npx. We visualize the covariance model
in Fig. 3. The rotational variance in the object frame is defined
to be diagonal: ΣOr = diag(σ2

Or(npx), σ
2
Or(npx), σ

2
Or(npx)).

Models for the variances σ2
C′xy, σ

2
C′z , and σ2

Or are estimated
on the pose estimation dataset as shown in the experiment sec-
tion. The object covariance ΣO is composed of translational
and rotational covariances assuming zero correlation between
them.
Motion model factor. Motion model predicts the motion
of the object in time. We decoupled translation and rota-
tion motion and compared two methods for motion pre-
diction: (i) constant pose, and (ii) constant velocity. The
constant pose model for the residual of object i is defined as
rk−1:k,i
M = Log((T k−1,i

O )−1T k,i
O ) with diaganoal covariance

matrix ΣM = diag(σ2
Mt, σ

2
Mt, σ

2
Mt, σ

2
Mr, σ

2
Mr, σ

2
Mr) · ∆t,

where the translation and rotation variances σ2
Mt and σ2

Mr

are chosen manually, ∆t denotes the time elapsed from the
previous detection of the object i. With this motion model,

Fig. 4: Qualitative results on HOPE-Video. Comparison
between our method and CosyPose [2] on HOPE-Video se-
quence (the first row). It can be seen that some of the
objects are not detected by CosyPose (the second row). Our
temporally smoothed predictions are shown in the last row,
largely mitigating the issue of missing detections.

the object pose in the world model will remain constant and
its uncertainty will increase over time if no new measurements
are available.

The constant velocity motion model establishes the factor
on estimated derivatives of translation and rotation, from
which the pose is computed via integration. Therefore, the
set of variables in Eq. (1) is extended with the derivatives
for each object and time stamp. The residual is computed
as rk−1:k,i

M =
(
vk,i − vk−1,i, ωk,i − ωk−1,i

)⊤
, where vk,i

and ωk,i represent the time derivatives of translation and
rotation, respectively, for the i-th object at time k. The covari-
ance remains diagonal with constant variances for translation
and rotation defined manually. With this motion model, the
object pose evolves based on the estimated velocity, and
the uncertainty increases over time in the absence of new
measurements.

Predictions from the world model. Defining all the factors
and solving Eq. (1) gives us a probabilistic world model of all
objects and camera poses in time. We solve the optimization
for each new measurement in an iterative manner. Incoming
pose measurements are assigned to either existing or new
variables in a factor graph. Outliers are included as potential
valid measurements, but we only predict variables whose
estimated uncertainty ellipsoid volume falls below manually
specified thresholds τpred t, τpred r. If there are more identical
labels that satisfy the above thresholds and whose translation
distance is lower than the radius of the object’s bounding
sphere, we predict only the pose with the lower volume of
the covariance ellipsoid, i.e. the most confident track. This
filtering allow us to track multiple discrete symmetries of the
same object and to select only the most confident hypothesis
for the robot control.
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Fig. 5: Qualitative results on SynthHOPEDynamic. Com-
parison between our method and CosyPose [2] on Synth-
HOPEDynamic sequence shown in the first row. The center
of the frame is occluded by a black rectangle, and some of
the frames are artificially blurred in the input video. It can be
seen that some of the objects are not detected by per-frame
CosyPose shown in the second row (e.g., frames 2 and 3) or
that some outliers are detected (e.g., rotated cookie box in
frame 5). Our temporally smoothed predictions (the last row)
largely mitigate missing detections and outliers.

IV. EXPERIMENTS

Datasets. Four datasets were used for the quantitative eval-
uation: (i) Household Objects for Pose Estimation (HOPE-
Video) [42] dataset, (ii) YCB-V [43], [44] and (iii) two
synthetically rendered datasets created via Blender [45]. Only
RGB images are considered for all datasets. HOPE-Video
contains 10 video sequences captured by a moving camera
observing a static scene with 5-20 objects placed on a desk.
The video is recorded by a robot equipped with a RealSense
camera; an example of the video sequence is shown in Fig. 4.
YCB-V test set contains 12 video sequences captured by a
moving camera observing a static scene with a subset of 21
of the YCB [43] objects.

The remaining datasets are synthetically rendered using
HOPE objects [42]. To address the real-to-sim comparison,
we first rendered 10 video sequences with static objects placed
on the desk in a setup similar to the HOPE-Video datset. We
refer to this dataset as SynthHOPEStatic. Dynamical dataset
SynthHOPEDynamic is composed of 5-10 objects moving on
randomly sampled trajectories. The trajectories are obtained by
randomly sampling poses in SE(3) that are connected by the
Cartesian dynamical movement primitives [46] with randomly
sampled weights and initial and goal velocities. The camera
is also moving on a random trajectory and motion blur is
applied to random frames. To simulate challenging occlusions,
a uniform color box is rendered in front of the camera. In total,
10 video sequences are rendered for the SynthHOPEDynamic
dataset. An example of the synthetic dataset is shown in Fig. 5.
In total, we have three static datasets depicting stationary
objects and one dynamic dataset with moving objects.
Metrics. To measure performance, we calculated the average

recall and average precision for the three datasets. For average
recall, we rely on error metrics, which are commonly used
in the BOP object pose estimation challenge [47]. Recall is
averaged across several thresholds and across three different
metrics: (i) Visible Surface Discrepancy (VSD), (ii) Maximum
Symmetry-Aware Surface Distance (MSSD), and (iii) Maxi-
mum Symmetry-Aware Projection Distance (MSPD). See [8]
for details on these metrics and thresholds. For precision, we
used the same metric (i.e., VSD, MSSD, and MSPD) and the
same thresholds as used for the recall computation. Recall
penalizes missing object detections and object pose estimates,
while precision penalizes incorrect object detections and object
pose estimates. Only objects that are at least partially visible
in the image are considered in the evaluation; i.e., the number
of visible pixels is at least 5% of the size of the full object
projection.
Measurement covariance estimation. We empirically ob-
serve that translation measurement uncertainty is bigger in the
direction of ray pointing towards the object of interest (i.e.,
standard deviation σC′z) and that it depends on the size of the
object in the image space, as shown in Fig. 3. We propose to
model the dependence of the standard deviation on the number
of visible pixels of the object as an exponential function of the
form: σ(npx) = a exp(−bnpx), where a and b are parameters
fitted separately for the translation xy, the translation z (i.e.,
depth) and the rotation. Translation uncertainties are estimated
in the coordinate frame whose z-axis points toward the center
of the object, while rotation uncertainties are estimated in the
object coordinate frame. We used the Hope-Video dataset to
estimate these uncertainties.
Ablation study. Several thresholds need to be tuned for
the proposed filtering method. We manually set horizon H
to 30 frames corresponding to 1s in our setup, the outlier
prediction thresholds τoutlier t and τoutlier r are set to 100 mm
and 10◦. The prediction thresholds τpred t, τpred r, and the
variances of the motion models were chosen based on the
ablation study in which we evaluated the precision-recall
curve for various values of these hyperparameters. Subsets
containing three scenes from our synthetic datasets were used
to select thresholds for the constant pose model (subset of
SynthHOPEStatic) and for the constant velocity model (subset
of SynthHOPEDynamic). The result of the ablation is shown
in Fig. 6; we use it to select two sets of thresholds for each
motion model. These sets of thresholds correspond to recall-
and precision-oriented parameters as shown in Fig. 6.
Covariance models. In addition to threshold selection, we

TABLE I: Comparison of different covariance models.
Average Recall and Average Precision are computed by con-
sidering all frames of the video and all objects that are visible
in the image with at least 5% of the object size. The highest
values are shown in bold.

Decoupled Visibility dependent frame C′ recall precision

✓ ✓ ✓ 0.571 0.609
✓ × ✓ 0.570 0.608
✓ ✓ × 0.531 0.574
× ✓ N/A 0.483 0.549
× × N/A 0.498 0.542
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TABLE II: BOP Average Recall and Average Precision evaluated on three video datasets by considering all frames of the video
and all objects that are visible in the image at least 5% of the object size. ”Recall-oriented” and ”precision-oriented” refer to
different configurations aimed at maximizing average recall or precision while ensuring that the average of the other metric is
at least as good as CosyPose. Terms ”const. pose” and ”const. velocity” denote different motion models. The ”Short-horizon”
baseline refers to our method modified to use only the last 3 frames. We present recall and precision averaged across VSD,
MSSD and MSPD metrics. The best results for recall and precision are shown in bold.

HOPE-Video YCB-V SynthHOPEStatic SynthHOPEDynamic
Method recall precision recall precision recall precision recall precision

CosyPose [2] 0.39 0.57 0.81 0.72 0.53 0.69 0.44 0.66
Short-horizon 0.40 0.59 0.81 0.72 0.54 0.75 0.40 0.71
Ours (const. pose, recall-oriented) 0.57 0.61 0.82 0.77 0.74 0.85 not applicable
Ours (const. pose, precision-oriented) 0.43 0.65 0.81 0.80 0.63 0.89 not applicable
Ours (const. vel., recall-oriented) 0.47 0.60 0.80 0.79 0.58 0.79 0.45 0.76
Ours (const. vel., precision-oriented) 0.43 0.64 0.81 0.77 0.53 0.83 0.41 0.79
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Fig. 6: Ablation study for the constant pose motion model
(left) evaluated on three scenes of the static synthetic dataset
and for the constant velocity motion model (right) evaluated on
three scenes of the dynamic synthetic dataset. The precision-
recall trade-off is controlled by hyperparameters of our model.
Recall oriented parameters are selected such that recall is
maximal and precision is at least at CosyPose level. The
precision oriented parameters are chosen analogously.

conducted an ablation of different variants of covariance
models to evaluate their effect on performance. The models
were evaluated on the HOPEVideo dataset using the constant
pose motion model and recall-oriented parameters. The results
are shown in Tab. I. We ablate various aspects of the model:
isotropic vs. decoupled along the x, y, and z axes, constant
vs. visibility dependent, and expressed in camera frame vs.
in rotated frame C ′. The results show that our proposed
covariance model has the best performance, indicating that the
rotated camera frame C ′ is important for accurate modeling
of the covariance. In contrast, the dependency on the object’s
visibility in the image shows only a minor improvement.
Quantitative evaluation. We evaluated the performance of
our method on the four datasets mentioned above. The results
are summarized in Tab. II. Two baselines are considered:
(i) per-frame CosyPose [2] and (ii) short-horizon filtering, in

TABLE III: Comparison to state-of-the-art methods.

Method ADD-S ADD(-S)

CosyPose [2] 0.9 0.84
Merrill et al. [28] 0.9 0.85
Xu et al. [48] - 0.83
Di et el. [49] 0.91 0.84
Ours 0.94 0.9

which only the last three frames were used for our method.
For static object datasets (i.e. HOPE-Video, YCB-V and
SynthHOPEStatic) both constant pose and constant velocity
motion models are evaluated. It can be seen that our meth-
ods outperformed the baselines in recall (the recall-oriented
variant) while achieving comparable precision. Similarly, for
the precision-oriented variant, we outperform the baselines in
precision while achieving a comparable recall. The precision-
recall trade-off can be controlled by the hyperparameters.
The constant pose motion model achieved better performance
than the constant velocity motion model as it has a stronger
prior about the motion of the objects. For the dynamic object
dataset, we evaluated the constant velocity motion model. We
outperform the baselines in a similar manner.

Our approach outperforms both the per-frame CosyPose and
the short-horizon smoothing baselines. Our results show that
longer horizon and smoothing can be used to control recall-
precision trade-off and therefore it can be tuned for robustness
that is required for feedback robot control.
Comparison with state-of-the-art. To further validate our
approach, we extend the evaluation to the YCB-V dataset, uti-
lizing the ADD-S and ADD(-S) metrics, which are commonly
used to assess object pose estimation accuracy. In Tab. III,
we present a comparison of our method against several state-
of-the-art approaches on this dataset. Our method consistently
outperforms the reported techniques.
Sensitivity to pose estimation backbone. In Tab. IV, we com-
pare our method’s performance using different pose estimation
backbones. Specifically, we evaluate CosyPose and MegaPose
as the underlying pose estimation backbones and then compare
them with our approach. The results show that our method
improves both recall and precision metrics, regardless of the
chosen backbone. This demonstrates that our approach is not
tightly coupled to a specific pose estimation model and can
be effectively integrated with various state-of-the-art methods
without significant performance degradation.
TABLE IV: Sensitivity to backbone. We compare our ap-
proach using different backbones on the HOPEVideo dataset.

Method recall precision

CosyPose 0.39 0.57
Ours (CosyPose backbone) 0.57 0.61

MegaPose 0.37 0.54
Ours (MegaPose backbone) 0.54 0.61
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CosyPose

Refiner

Buffer

Track

Controller

Input image

State
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Fig. 7: The robot control architecture used for the tracking
experiment. First, an image Ik is used with CosyPose to
generate object pose estimates. These estimates are then fed
into the proposed Refiner along with the camera pose T k

WC

whose timestamp corresponds to the time stamp of the input
image Ik used in CosyPose. This synchronization is achieved
by buffering the poses TWC and subsequently selecting the one
with the closest timestamp. The Refiner produces an estimate
of the State, i.e., the probabilistic world model. Note that
although the world model is updated at CosyPose frequency,
the State is computed at the robot control frequency using the
motion model. Finally, a track selected by the user is used
as input for the robot Controller, which computes the motor
torques τττ required to move the robot into the desired pose.
The typical processing frequencies of individual modules are
5 Hz for CosyPose and Refiner, 30 Hz for the camera, and
1 kHz for the state extrapolation and robot controller.

Qualitative robotic experiment. To validate the stability of
the proposed filtering method, we performed several robotics
experiments. For all experiments, we used a Franka Emika
Panda robot equipped with a calibrated RealSense D435 cam-
era attached to its end-effector. The camera produces a 60 Hz
RGB video stream with a resolution of 640x480 pixels. We
conducted the following robotic experiments to demonstrate
the advantages of the method: (i) Static scene objects pose
estimation in which the robot is guided by a human hand
and, while moving, it estimates the poses of objects that are
statically placed in front of the robot; (ii) Dynamic scene
object pose estimation, where the robot remains static and
estimates the poses of objects that are moved by a human;
and (iii) Dynamic object tracking where the robot maintains
constant pose with respect to a target tracked object. In the
first two experiments, the robot is not controlled on the basis
of the predicted poses and our method can be applied directly.
Please, see the supplementary video for the recording of the
experiments.

For the dynamic object tracking experiment, we implement
the Cartesian impedance control [50] using the estimated
target object pose as reference. The controller architecture is
visualized in Fig. 7. With this control architecture and using
the proposed filtering method, we achieve stable tracking in
a challenging scenario in which the object is hidden behind
an occluder, as shown in Fig. 8. The analysis of the image
stream for the tracking experiment is shown in Fig. 9. The
full experiment is shown in the supplementary video.

Fig. 8: Robot tracking experiment. The illustration depicts
a selected sequence of images recorded during an experiment
where the robot attempts to maintains a constant relative end-
effector transformation with respect to the Cheez-it box from
the YCB [43] dataset. During the tracking process, the object
is occluded by a sheet of paper, demonstrating the temporal
consistency and stability of the refined pose estimates.
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Fig. 9: Analysis of robot tracking experiment. The evolution
of the object angular distance for the robot tracking experi-
ment. If the object is not occluded, CosyPose and our method
predicts the object pose accurately (first frame). However,
when object is completely occluded the per-frame evaluation
cannot evaluate the pose of the object (second frame). Finally,
if the object is partially visible, CosyPose predicts wrong
orientation while the proposed estimator remains stable (third
frame).

V. CONCLUSION

Accurate and temporally consistent object pose estimation
is crucial for robot interaction with both static and dynamically
moving objects. This work demonstrates that it is beneficial
to consider the full stream of images rather than the per-
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frame estimates to achieve robust temporally smooth predic-
tions. The proposed algorithm for probabilistic filtering has
been validated both quantitatively on three benchmarks and
qualitatively by tracking experiments involving a Panda robot,
showing improved results while running in real time.
Limitations. This work addressed object symmetries as sepa-
rate tracks in the factor graph. Although it works for discrete
symmetries (e.g. a box), continuous symmetries (e.g. a cylin-
der) would create many low-confidence tracks that would be
difficult to use for robot control. This may be addressed by
assuming known symmetries and modifying the object pose
factor, which is left for future work.
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