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Technical Report: Supplementary Results for
Temporally Consistent Object 6D Pose Estimation

Kateryna Zorina∗, Vojtech Priban∗, Mederic Fourmy, Josef Sivic and Vladimir Petrik

I. INTRODUCTION

This technical report accompanies our manuscript, titled Temporally Consistent Object 6D Pose Estimation for Robot Control,
which has been accepted for publication in IEEE Robotics and Automation Letters. In response to reviewer suggestions and
to provide a comprehensive resource for readers, this report presents additional implementation details, ablation studies, and
extended evaluations that could not be included in the journal paper due to space constraints.

The key contributions of this technical report are as follows:
• Detailed implementation methodology, including calibration procedures and covariance modeling for pose estimation.
• Extended ablation studies on object and camera pose estimation, robustness to noise, and adaptive object size thresholds.
• Detailed description of pose uncertainty estimates
• Additional quantitative and qualitative evaluations.
This document aims to serve as a supplemental resource, providing more details of the implemented methods.

II. IMPLEMENTATION DETAILS

A. Forward kinematics and calibration details

We use the standard calibration procedure: (i) we record a dataset of pairs containing the robot configuration and an image
that captures a ChArUco board calibration target; (ii) we use these images for intrinsic calibration using the OpenCV library
[1]; (iii) we estimate an initial guess for the camera pose with respect to the robot flange by using hand-eye calibration from
the OpenCV library with corresponding poses of the robot flange (computed by forward kinematics) and the target (estimated
by the camera); (iv) finally we perform local optimization to estimate the robot joint offsets and the refined camera pose by
minimizing the reprojection errors on the ChArUco corners. We did not optimize other robot-related parameters as observed
reprojection errors indicate that the current procedure provides adequate robot and hand-eye calibration. This calibration is
performed offline before we start any robotics experiment. For the computation of forward kinematics, we use the Pinocchio
library [? ].

III. ADDITIONAL ABLATION STUDIES

A. Ablation on the accuracy of the camera and object pose estimates

We performed ablations on HopeVideo dataset using our constant pose motion model and recall-oriented parameters. The
parameters and modeled covariances remain fixed.

First, we analyzed the effect of noise on object pose measurements. We introduced additional random noise to the translation
and rotation of the measured object pose. It is important to note that CosyPose was used to obtain these measurements, so the
added noise is applied on top of the inherent uncertainty provided by CosyPose. The results of the noise sensitivity analysis
are presented in Tab. 1. It can be seen that both the recall and the precision decreased significantly after applying a fairly
large noise with a standard deviation of 20 mm and 5 degrees. However, for smaller noise values, our approach maintains its
performance.

In our second experiment, we perform sensitivity analysis for noise applied to the camera pose measurements. The results
are shown in Fig. 2. Both recall and precision performance drop significantly as injected noise violates our assumption of
accurate camera pose measurements that we get from a camera rigidly attached to the accurate industrial robot.
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Fig. 1: Sensitivity analysis for object pose noise. We applied translation and rotation noise to all object pose measurements
and evaluate BOP Average Recall and Average Precision of our method. Zero mean Gaussian noise was applied to CosyPose
measurements with standard deviation reported on the x-axis for translation noise and on y-axis for the rotation noise.
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Fig. 2: Sensitivity analysis for camera pose noise. We applied translation and rotation noise to all camera pose measurements
and evaluate BOP Average Recall and Average Precision of our method. Zero mean Gaussian noise was applied to camera
pose measurements with standard deviation reported on the x-axis for translation noise and on y-axis for the rotation noise.

B. Ablation of object size threshold

We conduct an ablation study to compare setting identical-label object distance threshold of 50 mm to adaptive threshold
computation. To compute the adaptive threshold, we compute the size of the object using the bounding sphere, i.e., the
smallest sphere that fully encloses the object. The radiuses are shown in Fig. 3 with datasets statistics shown in Tab. I. Given
the significant variance in radiuses, we have implemented the adaptive threshold as you proposed, using the object radius as
the value for thresholding. We compare the adaptive threshold with fixed value of 50 mm and observe an increase in precision
as shown in Tab. II.

TABLE I: Datasets statistics of object sizes. Statistics on bounding sphere radius for YCBV and HOPE object models. All
values are in millimeters.

Dataset min max mean std

HOPE [2] 38 126 68 25
YCBV [3] 45 135 89 27
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Fig. 3: Radius of bounding sphere for YCBV and HOPE object models. Green dashed line shows the fixed value of 50 mm
that we used for prediction thresholding in the initial submission.

TABLE II: Ablation of adaptive prediction threshold. We compare the adaptive prediction threshold, which value is set to
the radius of object’s bounding sphere, with the fixed prediction threshold set to 50 mm. We evaluate results on the HOPEVideo
dataset. We use a constant pose motion model and recall-oriented parameters.

Fixed threshold Adaptive threshold

Recall 0.57 0.57
Precision 0.58 0.61

C. Cost function ablation

Our hypothesis for this ablation is that our data association method is designed to prevent the bias introduced by outliers. If
a measurement is an outlier, i.e., far from the tracked variable, it is not associated with that variable. As a result, all associated
measurements remain close to the tracked variable, eliminating the need for an explicit robust cost function. Data association
is crucial because we do not know the number of objects beforehand; they are dynamically created by our data association
mechanism online. To validate this hypothesis, we have implemented the Huber loss [4] for object pose measurement and
ablate various values for the Huber loss parameter δ. The results, shown in Tab. III, indicate that a robust cost function is not
necessary in the presence of our data association mechanism.

TABLE III: Ablation of robust cost function. Huber loss with various thresholding values is compared to L2 norm that we
used in optimization. We evaluate results on the HOPEVideo dataset. We use a constant pose motion model and recall-oriented
parameters.

Huber Loss L2 Norm (Ours)
δ = 10−3 δ = 10−2 δ = 5 · 10−2 δ = 10−1

Recall 0.5708 0.5706 0.5708 0.5708 0.5725
Precision 0.5846 0.5857 0.5857 0.5846 0.5835
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IV. COVARIANCE MODEL FOR OBJECT POSE MEASUREMENTS

To estimate the covariance, we use the HOPEVideo dataset on which we estimated object poses using CosyPose. Let us
denote CosyPose pose estimation in the camera frame as R̃C , t̃C (rotation and translation) and ground-truth object pose in the
camera frame as RC , tC . We compute the translation error in the camera frame as

eC = t̃C − tC , (1)

and the angular error in the object frame as

θO = ∥x∥ (2)

where log is the SO(3) log function. We filter outliers from these measurements by removing samples with less than 50 visible
pixels, with rotation error greater than the 70th percentile (i.e., remove 30% of the worst data) and with translation error greater
than the 95th percentile. The rotation error percentile is higher because object symmetries are ignored in our error computation.
We plot the translation errors in the first row of Fig. 4.

However, we observe that the variance of the x and y axes is negatively affected by errors in depth estimation. To address
this issue, we introduced a rotated camera frame, denoted C ′. This frame has the z axis oriented towards the center of the
object, for which the pose is estimated, as illustrated in Fig. 3 in the submitted manuscript. To compute the error in the frame
C ′, we first find the rotation matrix that rotates the vectors from the frame C to the frame C ′, denoted RC′C . This is defined
uniquely as the rotation that rotates tc to vector u = (0, 0, 1)⊤:

v = tc × u, (3)
ϕ = arccos(tc · u), (4)
RC′C = exp(ϕv), (5)

(6)

where overline indicates normalized vector, symbol ”·” indicates dot product, and exp is SE3 exponential. Expressing the
CosyPose estimation as well as the ground truth pose in frame C ′ and computing the translation error in C ′ give us:

t̃C′ = RC′C t̃C , (7)
tC′ = RC′CtC , (8)

eC′ = t̃C′ − tC′ . (9)

We plot the translation errors expressed in C ′ frame in the second row of Fig. 4. Please note that the variance in the x and y
axes was reduced.
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Fig. 4: Translation errors for object pose estimation with CosyPose. The first row shows the errors in camera frame C
separately for x, y, and z axes (columns). The second row shows the errors in rotated camera frame C ′. Please note that the
variance of errors in x and y axes is lower in the rotated camera frame (bottom).
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Fitting covariance models. The variance in Fig. 4 shows the dependency on object visibility in pixels. We model this
dependency with an exponential function of the form: σ(npx) = a exp(−bnpx) where σ is the standard deviation and npx is
the number of visible pixels in the image. To find unknown parameters a and b, we split the data into 100 chunks linearly
based on the number of visible pixels. For each chunk, we compute npx as the average of the samples in the chunk, and we
estimate the standard deviation in the chunk as

σ =

√√√√ 1

n− 1

n∑
i=1

e2 , (10)

where n is the number of samples and e is the computed error (e.g., error in z-axis in the frame C ′). We use curve fitting to
estimate parameters a and b on the chunk values.

As errors in the x and y axes have similar values, we estimate a single curve for the standard deviation on these axes and
another curve for the standard deviation on the z axis. We do this estimation for errors in both frames C and C ′ and visualize
it in Fig. 5. The results show that the fitted model predicts lower covariance in the frame C ′ for x and y axes.

As a baseline, we also estimate the isotropic covariance model. We distinguish two variants, (i) the isotropic translation
standard deviation that does depend on object visibility in the image and (ii) the constant isotropic translation model. Both are
visualized in Fig. 6.

The uncertainty of the rotation is estimated in the object frame; we distinguish a constant and size-dependent variants,
as shown in Fig. 7. The size-dependent variant is coupled with size-dependent variants of translation uncertainty, while the
constant variant is used only for the isotropic constant covariance model. The standard deviations are combined into covariance
models as described in Sec. III paragraph The object pose measurement factor. in the submitted manuscript.
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Fig. 5: Standard deviation estimation. The error samples that we use for estimation are shown in red in camera frame C (top
row) and rotated frame C ′ (bottom row). We plot standard deviation with 3 σ. We fit standard deviation in C frame (shaded
area in green) and in C ′ frame (shaded area in blue). Both models are plotted in both rows for better visual comparison. It can
be seen that standard deviation model in the frame C ′ is smaller. The standard deviation is also decreasing for more visible
objects as the estimation is easier if object covers larger area in the image. In addition, we also plot visibility independent
standard deviations estimated for frame C ′ (orange shaded area).
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Fig. 6: Estimation of the Standard deviation for isotropic models. A single standard deviation parameter is fit for all axes.
We plot standard deviation with 3 σ. We distinguish two models: (i) dependent on the object visibility (orange) (ii) constant
(cyan).
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Fig. 7: Standard deviation estimation for rotation uncertainty. We plot standard deviation with 3 σ. We distinguish two
models: (i) dependent on the object visibility (orange) (ii) constant (cyan).

Ablation of covariance models. We compare the different covariance models on the HOPEVideo dataset. We use a constant
pose motion model and recall-oriented parameters for the ablation. The results are shown in Tab. IV. Note that the first row
of the table corresponds to the covariance model that we proposed to use in the manuscript, it is shown in blue in Fig. 5 for
translation and in cyan in Fig. 7 for rotation. The second row corresponds to the visibility independent model shown with
orange color in Fig. 5 and Fig. 7 for translation and rotation, respectively. The third row corresponds to the green color for
translation in Fig. 5. The remaining two rows represent isotropic translation models, shown in Fig. 6 and Fig. 7 by cyan for
the fourth row and orange for the fifth row of the table. The results show that our proposed covariance model has the best
performance, indicating that the rotated camera frame C ′ is important for accurate modeling of the covariance. In contrast, the
dependency on the object’s visibility in the image shows only a minor improvement.
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TABLE IV: Ablation of covariance models. We compare various covariance models for object pose measurements on the
HOPEVideo dataset using the constant pose motion model and recall-oriented parameters. Average Recall and Average Precision
are computed by considering all frames of the video and all objects that are visible in the image with at least 5% of the object
size. We compared various aspects of the covariance models: (i) isotropic vs. decoupled on the x, y and z axes, (ii) visibility
dependent vs. constant; and (iii) for the decoupled variant we compared the estimated covariance for the rotated frame C ′ and
the camera frame C. Note that the isotropic model is frame independent. The highest values are shown in bold.

Decoupled Visibility dependent frame C′ recall precision

✓ ✓ ✓ 0.571 0.609
✓ × ✓ 0.570 0.608
✓ ✓ × 0.531 0.574
× ✓ N/A 0.483 0.549
× × N/A 0.498 0.542

V. ADDITIONAL EVALUATION AND ANALYSIS

A. Translation error analysis

We conducted a quantitative analysis of outliers using the HOPEVideo dataset, comparing the translation and MSSD errors
from CosyPose with those from our method. The results are presented in Fig. 8, which clearly illustrates the advantages of
our approach in reducing pose estimation errors.

(a) Quantitative analysis of Translation Errors. (b) Quantitative analysis of MSSD Errors.

Fig. 8: Quantitative analysis of errors for pose estimation. These figures present the 90th percentile and the worst-case of
translation and MSSD errors for both CosyPose and our method with precision-oriented parameters. The translation error plot
is in a logarithmic scale. The results illustrate the effectiveness of our approach in reducing pose estimation errors (highlighted
with green arrows), particularly in comparison to CosyPose, demonstrating a significant improvement in the reliability of pose
estimation.

B. Linear velocity model

Our implementation allows for higher-order derivatives for the motion model, e.g. constant acceleration, constant jerk. The
linear velocity motion model would correspond to constant acceleration, and we show the results for a dataset with dynamically
moving objects in Tab. V. The result shows a comparable recall performance and a small decrease in precision performance
compared to the constant velocity motion model. However, the choice of motion model depends on the target application -
in our real-world experiments with human-controlled objects, the constant-velocity motion model was sufficient as we do not
have a strong prior on object motion.

TABLE V: Ablation of motion models. Evaluation of constant velocity and constant acceleration motion models on
SynthHOPEDynamic dataset for recal-oriented parameters.

Constant velocity motion model Constant acceleration motion model

Recall 0.50 0.51
Precision 0.69 0.65
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