

Robotics: Denavit-Hartenberg notation

Vladimír Petrík

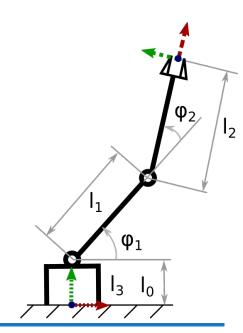
vladimir.petrik@cvut.cz

20.10.2023

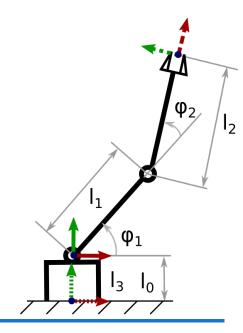
Denavit-Hartenberg notation

- ▶ Method for assigning frames to links in kinematic chains
- Introduced by Jacques Denavit and Richard Hartenberg in 1955
- Minimal representation
- Sometimes used in robotics

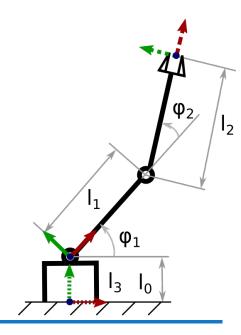
 \blacktriangleright Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$



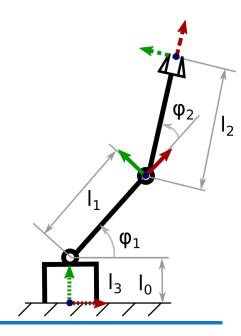
- ▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $ightharpoonup T_1 = T_y(l_0)$



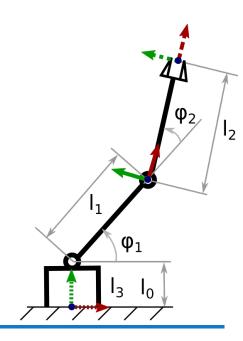
- ▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $T_1 = T_y(l_0)$
- $ightharpoonup T_2 = R(\varphi_1)$



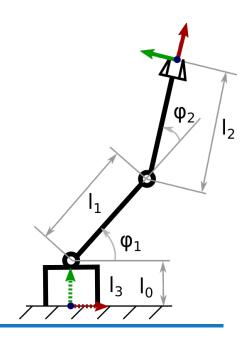
- ▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $T_1 = T_y(l_0)$
- $T_2 = R(\varphi_1)T_x(l_1)$



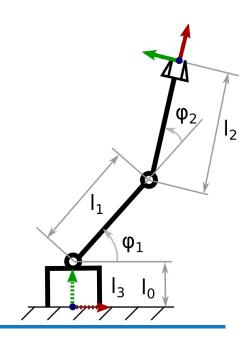
- ▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $T_1 = T_y(l_0)$
- $T_2 = R(\varphi_1)T_x(l_1)$
- $ightharpoonup T_3 = R(\varphi_2)$



- ▶ Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $ightharpoonup T_1 = T_y(l_0)$
- $T_2 = R(\varphi_1)T_x(l_1)$
- $ightharpoonup T_3 = R(\varphi_2)T_x(l_2)$



- ► Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $ightharpoonup T_1 = T_y(l_0)$
- $T_2 = R(\varphi_1)T_x(l_1)$
- $ightharpoonup T_3 = R(\varphi_2)T_x(l_2)$
- $T = T_1 T_2 T_3$



- ► Consider FK for a planar 2-DoF manipulator $\varphi_1, \varphi_2 \to T \in SE(2)$
- $ightharpoonup T_1 = T_u(l_0)$
- $ightharpoonup T_2 = R(\varphi_1)T_x(l_1) \leftarrow \mathsf{structure}$
- $ightharpoonup T_3 = R(\varphi_2)T_x(l_2)$
- $T = T_1 T_2 T_3$

► Similar structure but for spatial manipulators

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $ightharpoonup T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{DH} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$
 - 2. $T_{DH} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a), T_z(d), R_x(\alpha), R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$
 - yes, $T_x R_x = R_x T_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

 $R_y T_y$

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a), T_z(d), R_x(\alpha), R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$
 - $\text{yes, } T_xR_x=R_xT_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a), T_z(d), R_x(\alpha), R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a), T_z(d), R_x(\alpha), R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$
 - yes, $T_x R_x = R_x T_x$
 - 2. $T_{DH} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

 R_yT_x

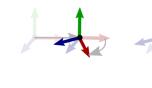
- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a), T_z(d), R_x(\alpha), R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- ▶ Which of the following equals to T_{DH} ?
 - 1. $T_{DH} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$
 - yes, $T_x R_x = R_x T_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

 R_yT_x

- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- \blacktriangleright Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$

 $T_x R_y$

 R_yT_x



- Similar structure but for spatial manipulators
- ► Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- ▶ Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{DH} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$
- lacktriangle Can we create arbitrary SE(3) transformation with DH

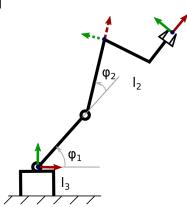
- Similar structure but for spatial manipulators
- Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- ▶ Which of the following equals to T_{DH} ?
 - 1. $T_{DH} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$
- lacktriangle Can we create arbitrary SE(3) transformation with DH
 - No, only 4 DoF

- Similar structure but for spatial manipulators
- Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- ▶ Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{DH} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$
- ightharpoonup Can we create arbitrary SE(3) transformation with DH
 - No, only 4 DoF
 - Designed for open kinematic chains with revolute and prismatic joints

- Similar structure but for spatial manipulators
- Four parameters for each transformation
 - $ightharpoonup T_x(a)$, $T_z(d)$, $R_x(\alpha)$, $R_z(\theta)$
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
- ▶ Which of the following equals to T_{DH} ?
 - 1. $T_{\text{DH}} = T_z(d)R_z(\theta)T_x(a)R_x(\alpha)$ yes, $T_xR_x = R_xT_x$
 - 2. $T_{\text{DH}} = R_x(\alpha)T_x(a)R_z(\theta)T_z(d)$
- ightharpoonup Can we create arbitrary SE(3) transformation with DH
 - No, only 4 DoF
 - Designed for open kinematic chains with revolute and prismatic joints
- Coordinate frames need to be placed appropriately
 - > z-axis is in axis of rotation/translation
 - $ightharpoonup x_1$ is perpendicular to z_0 and z_1
 - $ightharpoonup x_1$ intersects z_0 and z_1

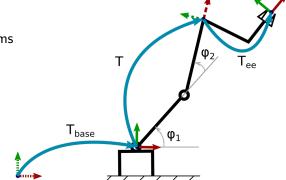
Initial and final transforms

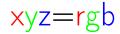
- ightharpoonup We cannot create arbitrary SE(3) transformation with DH
 - ► Mount gripper on different location
 - Defining different reference frame



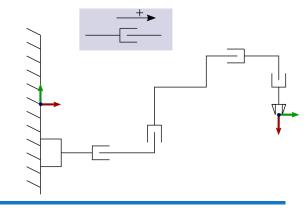
Initial and final transforms

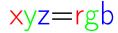
- ightharpoonup We cannot create arbitrary SE(3) transformation with DH
 - ► Mount gripper on different location
 - ▶ Defining different reference frame
- Usually we define initial and final transforms
 - $T = T_{DH}^1 T_{DH}^2 ... T_{DH}^n$
 - $ightharpoonup T_{\mathsf{FK}} = T_{\mathsf{base}} T T_{\mathsf{ee}}$



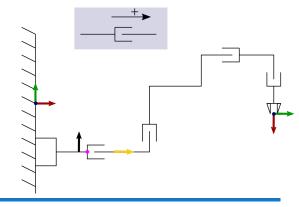


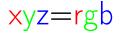
- Four prismatic joints
- Solve FK with DH notation



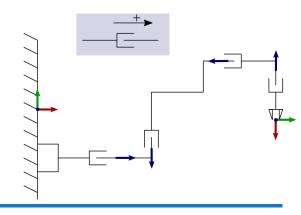


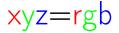
- $\triangleright z$ -axis is in axis of rotation/translation
- ▶ Where will be z -axis?
 - 1. black
 - 2. yellow
 - 3. pink



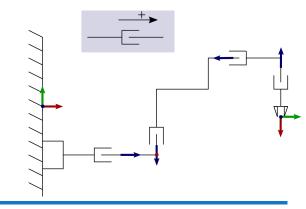


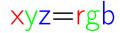
▶ Be careful with orientation



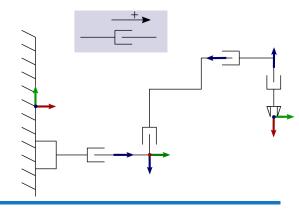


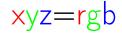
- ▶ We know:
 - $ightharpoonup x_1$ is perpendicular to z_0 and z_1
 - $ightharpoonup x_1$ intersects z_0 and z_1
- \triangleright x -axis of the first frame:
 - 1. axis points out of the screen
 - 2. axis points into the screen
 - 3. both in/out is correct



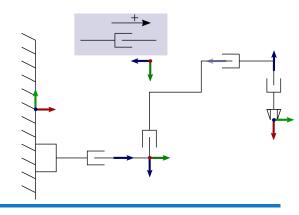


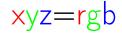
We know x and z, we can determine origin and y



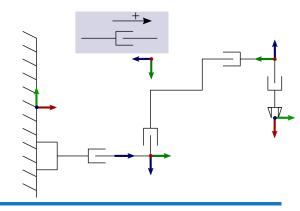


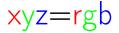
Some frames could be located 'outside' the robot



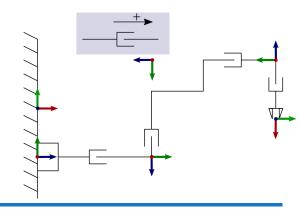


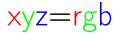
► Only the last frame is missing





- We have 6 frames
 - ► Initial transformation
 - ▶ 4 DH transformations
 - ► Final transformation
- ▶ It remains to determine DH parameters

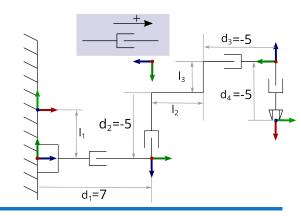




▶ Initial transformation: $T_y(-l_1)R_y(90^\circ)$

${\sf JointType}$	θ	d	a	α
Р	0	d_1	0	90°
Р	0	$d_2 - l_3$	0	90°
Р	0	$d_3 - l_2$	0	90°
Р	0	d_4	0	0

- ► We need to include helper frame before the gripper
 - $ightharpoonup x_1$ is not perpendicular to z_0 and z_1
- Final transformation: $R_y(90^\circ)R_x(180^\circ)$



Conclusion

- What is DH notation
 - $T_{\mathsf{DH}} = R_z(\theta) T_z(d) R_x(\alpha) T_x(a)$
 - Designed for open kinematic chains with revolute and prismatic joints
- ► How to assign frames