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Differential kinematics

> We know how to compute end-effector pose from the configuration

forward kinematics

z(t) = fu(a(t))

x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R?, R3 for position only
q(t) € RY is configuration (joint space)

t represents time

vVvVvyyvyy
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Differential kinematics

» We know how to compute end-effector pose from the configuration

forward kinematics

z(t) = fa(q(t))

x(t) is expressed in task-space, i.e. SE(2) , SE(3) , or R?, R3 for position only
q(t) € RY is configuration (joint space)

>t represents time

vVvyvyy

» Differential kinematics

> relates end-effector velocity to joint velocities
> g =2 c gM
> Jacobian of the manipulator is core structure in the analysis
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Jacobian

Forward kinematics:
x(t) = fa(q(t))

Jacobian:

da(t
dt

~—
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Jacobian

Forward kinematics:

x(t) = fu(q(t))

Jacobian:
~dx(t)
o dt
_ 9fw(q) dg(t)
0q dt
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Jacobian

Forward kinematics:

x(t) = falq(t))
Jacobian:

da(t
dt¢
_ Ofw(q) dq(?)
Y dt
_ affk(‘])q

~—
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Jacobian

Forward kinematics:

Jacobian:

x(t) = fu(q(t))

da(t)
dt
_ Ofu(q) dq(t)
dq dt
_ Ifulq) .
= 94 q

= J(q)q

€T =

J(q) = —8@";‘1) e RM*N
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Planar robot example

> FK: g = (01,02)" — (z,9)"
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Planar robot example

> FK:q=(01,0)" — (z,9)7
> x = Ljcosbty + Lacos(6; + 6)
> y=Lysinf, + Lo sin(91 + 92)
> =7
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Planar robot example

> FK:q=(01,0)" — (z,9)7
> x = Ljcosbty + Lacos(6; + 6)
> y=Lysinf, + Lo sin(91 + 92)
> =7
> = —L.lél sin 67 — Lg.(él + 62) sin(91 + 92)
> 41 = L1671 cos Oy + La(01 + 02) cos(61 + 05)
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Planar robot example

> FK: g = (61,02)" — (2,9)"
> x = Ljcosbty + Lacos(6; + 6)
> y=Lysinf, + Lo Sin(91 + 92)
> =7
> = —L.lél sin 67 — Lg.(él + 62) sin(91 + 92)
> 41 = L1671 cosOy + La(01 + 02) cos(61 + 05)
> J(q) _ —L1 sin 01 - L2 sin(01 + 02) _L2 sin(91 + 92))
Licosfy + Lacos(fy +63)  Locos(61 + 62)
» Jacobian depends on the configuration g
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Jacobian dimension

> J(q) = 3fg:§<1) c RMxN
» M task-space DoF
» N joint-space DoF
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Jacobian dimension

> J(q) = 2alD) ¢ RMXN

» M task-space DoF

» N joint-space DoF

» Redundant robots: N > M
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Jacobian dimension

J(g) = Y50 e RMN

M task-space DoF

N joint-space DoF

Redundant robots: N > M
Under-actuated robots: N < M

vVvyVvyyvyy
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Jacobian dimension

J(q) = g2 e RMN

M task-space DoF

N joint-space DoF

Redundant robots: N > M
Under-actuated robots: N < M

2 DoF robot with translation task space:

vVvyVvyVvyyvyy
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Jacobian dimension

J(q) = g2 e RMN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space:

vVvVvyVvyVvyVvyYvyy
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Jacobian dimension

J(q) = 8]%5‘1) c RMxN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space:

vVVvyVYyVvyVYyVvYVvYyYy
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Jacobian dimension

J(q) = YD ¢ RN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space:

VVyVYyVYyVYyVYYVYYVYY
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Jacobian dimension

J(q) = YD ¢ RN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space: 6 x 6

7 DoF robot with SE(3) task space:

VVYyVYVYVYVYVVYYVYY
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Jacobian dimension

J(q) = YD ¢ RN

M task-space DoF

N joint-space DoF

Redundant robots: N > M

Under-actuated robots: N < M

2 DoF robot with translation task space: 2 x 2
2 DoF robot with SE(2) task space: 3 x 2

5 DoF robot with SE(2) task space: 3 x 5

6 DoF robot with SE(3) task space: 6 x 6

7 DoF robot with SE(3) task space: 6 x 7

VVYyVYVYVYVYVVYYVYY
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Jacobian properties

> J(g) = (Ji(q) Ja(q))
» First column corresponds to the end-point velocity for ¢ = (1 O)T
» Second column corresponds to the end-point velocity for ¢ = (0 1)T

> & = v, = J1(q)01 + Ja(q)b>
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Jacobian properties

J(q) = (Ji(q) J2(q))

First column corresponds to the end-point velocity for g = (1 O)T

& =vip = J1(q)01 + J2(q)b2
We can generate tip velocity in any direction if Ji(q) and J2(q) are not collinear
> when they are collinear?

| 2
| 2
» Second column corresponds to the end-point velocity for ¢ = (0 1)T
| 2
>
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Jacobian properties

J(q) = (Ji(q) J2(q))

First column corresponds to the end-point velocity for g = (1 O)T

& =vip = J1(q)01 + J2(q)b2
We can generate tip velocity in any direction if Ji(q) and J2(q) are not collinear
> when they are collinear?e.g. 63 =0

| 2
| 2
» Second column corresponds to the end-point velocity for ¢ = (0 1)T
| 2
>
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Jacobian properties

J(q) = (Ji(q) J2(q))

First column corresponds to the end-point velocity for g = (1 O)T

& = vip = J1(q)01 + J2(q)b2

We can generate tip velocity in any direction if Ji(q) and J2(q) are not collinear
> when they are collinear?e.g. 63 =0

Jacobian is singular matrix — configurations are called singularities

rank of Jacobian is not maximal

end-effector is unable to generate velocity in a certain direction

| 2
| 2
» Second column corresponds to the end-point velocity for ¢ = (0 1)T
| 2
>

vvyy
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Jacobian columns visualization

é Robotics: Differential Kinematics and Statics
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How to compute jacobian numerically

» Finite difference method
> f(xo) o Let)=i0) 5 g
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How to compute jacobian numerically

» Finite difference method
> f(xo) o Let)=i0) 5 g

Oz Oz

dq dq

>y |
- 0 0
9 ol

dq Oq
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How to compute jacobian numerically

» Finite difference method
> f(xo) o Let)=i0) 5 g

Oz Oz
B 0
(o
- B B
)
dq0  Oq1

dz o~ Jrex(q+08)—fax(q) _ T

> S (q) o MAIEO el § = (5 0 --)

> Repeat for every element of J
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How to compute jacobian numerically

» Finite difference method
> f(xo) o Let)=i0) 5 g

Oz Ox

00 06

990  Oq1
> %(Q) ~ ffk,x(q+5§_ffk,x(Q)7 5 = ((5 0 )T
> Repeat for every element of J

> Slow to compute, easy to implement — used in testing
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How to compute jacobian analytically

—J2(0)
T . . .
> J= (JU Jw) i.e. translation and rotation part 1)
» Translation part:
> i-th column (ng) is perpendicular to vector t, connecting i-th joint to end-effector
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How to compute jacobian analytically

—Jo(0)
T . . .
» J=(J, Ju) ie translation and rotation part 1)
» Translation part:
> i-th column (ng) is perpendicular to vector t, connecting i-th joint to end-effector
> S - reference frame, J - frame attached to i-th joint, E end-effector frame
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How to compute jacobian analytically

—Jo(0)

T . : :
» J=(J, Ju) ie translation and rotation part

» Translation part:
> i-th column (ng) is perpendicular to vector t, connecting i-th joint to end-effector
> S - reference frame, J - frame attached to i-th joint, E end-effector frame
» ;g - translation part of Typ € SE(2)

—J1(0)
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How to compute jacobian analytically

—Jo(0)

T . : :
» J=(J, Ju) ie translation and rotation part

> Translation part:
> i-th column (ng) is perpendicular to vector t, connecting i-th joint to end-effector
> S - reference frame, J - frame attached to i-th joint, E end-effector frame
» ;g - translation part of Typ € SE(2)
> n = R(90)t;g - perpendicular vector

—J1(0)
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How to compute jacobian analytically

—Jo(0)

T . . .
» J=(J, Ju) ie translation and rotation part

» Translation part:

—J1(0)

> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
S - reference frame, J - frame attached to i-th joint, E end-effector frame

tsg - translation part of ;5 € SE(2)

n = R(90)t g - perpendicular vector

ng = Rgjn - change of reference frame

vvyyvyy
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How to compute jacobian analytically

—Jo(0)

T . . .
» J=(J, Ju) ie translation and rotation part
» Translation part:

—J1(0)

> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
> S - reference frame, J - frame attached to i-th joint, E end-effector frame

» ;g - translation part of Typ € SE(2)

> n = R(90)t,E - perpendicular vector

» ng = Rgyn - change of reference frame

» For prismatic joints: ng = Rgja
» a is axis of translation
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How to compute jacobian analytically

—Jo(0)
T . . .
» J=(J, Ju) ie translation and rotation part 1)
» Translation part:
> i-th column (ng) is perpendicular to vector ¢, connecting i-th joint to end-effector
> S - reference frame, J - frame attached to i-th joint, E end-effector frame
» ;g - translation part of Typ € SE(2)
> n = R(90)t,E - perpendicular vector
» ng = Rgyn - change of reference frame
» For prismatic joints: ng = Rgja
» a is axis of translation
» Rotation part
> 1 for revolute joints
» 0 for prismatic joints
ﬂ?-?;‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 10 / 23



Jacobian application - velocity limits
> & =J(q)q

> Velocity limits are given for each joint
> configuration independent

02 A
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Jacobian application - velocity limits

> &= J(q)q
» Velocity limits are given for each joint
> configuration independent
> What are the velocity we can achieve with end-effector?

> depends on configuration
P use jacobian to map joint-space velocity to task-space velocity

02 & &2
B A b
J(6)
> —P >
6, 1
C D B
C
‘i?-?g‘ Robotics: Differential Kinematics and Statics
/\J Vladimir Petrik 11 /23



Manipulability ellipsoid

» Unit circle in joint velocity space, ie. ||q|| =1

» Mapping through Jacobian to ellipsoid in end-effector space

» Closer the ellipsoid is to sphere, more easily can end-effector move in arbitrary
direction

0,

-
@
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How to compute manipulability ellipsoid

1= 14l

é Robotics: Differential Kinematics and Statics
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How to compute manipulability ellipsoid

é Robotics: Differential Kinematics and Statics
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How to compute manipulability ellipsoid

> If J(q) is non-singular
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How to compute manipulability ellipsoid

> If J(q) is non-singular

é Robotics: Differential Kinematics and Statics
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How to compute manipulability ellipsoid

> If J(q) is non-singular

s
e
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How to compute manipulability ellipsoid

> If J(q) is non-singular
» Solution to u' A~ u = 1 is ellipsoid

> eigen vectors of A show directions of principal axes of the ellipsoid
> square roots of eigen values are lengths of the principal axis

1=|q|

=q'q
= (J(q) ') (J(g) ti)
=& J(q) ' J(q) &

—&" (J@))@)") @
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Manipulability ellipsoid example

» 2 DoF robot, translation only, eig(.J.J ")
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How close we are to singularity?

» Condition number of JJ T

— Amax(JI)
> H1 = Amin(JJT) Z 1

> )\ is eigen value of a given matrix
> the larger uy is, the closer to singularity we are
» Small i is preferred
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How close we are to singularity?

» Condition number of JJ T

— Amax(JI)
> H1 = Amin(JJT) Z 1

> )\ is eigen value of a given matrix
> the larger uy is, the closer to singularity we are
» Small i is preferred
» Volume of manipulability ellipsoid
> the smaller volume is, the closer to singularity we are
> Ho = \/)\1/\2 - =det (JJT)

> Large jio is preferred
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How close we are to singularity?

» Condition number of JJ T

— Amax(JI)
> H1 = Amin(JJT) Z 1

> )\ is eigen value of a given matrix
> the larger uy is, the closer to singularity we are
» Small i is preferred
» Volume of manipulability ellipsoid
> the smaller volume is, the closer to singularity we are
> Ho = \/)\1/\2 - =det (JJT)

> Large jio is preferred
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Redundant robots and singularities

é Robotics: Differential Kinematics and Statics
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Null-space of jacobian

» Null(4) = ker(A) = {x| Ax = 0}

é Robotics: Differential Kinematics and Statics
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Null-space of jacobian

» Null(4) = ker(A) = {x| Ax = 0}
» Findgst. =0
> gnun € ker(J)

é Robotics: Differential Kinematics and Statics
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Null-space of jacobian

» Null(4) = ker(A) = {x| Ax = 0}
» Findgst. =0
> gnun € ker(J)
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Null-space of jacobian

» Null(4) = ker(A) = {x| Ax = 0}
» Findgst. =0
> qnu” S ker(J)
> there are multiple solutions if we have more DoF
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Statics analysis

» Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)
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Statics analysis

» Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion
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Statics analysis

» Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)
> Static equilibrium: no power is used to move the robot, i.e. no motion
> (power at the joints) = (power at the end-effector)
>» rTg=F"z
> T joint torques
> g joint velocities
» F end-effector force
> & end-effector velocity
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Statics analysis

» Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion
> (power at the joints) = (power at the end-effector)
» rTg=F'"a

T joint torques

q joint velocities

F' end-effector force

x end-effector velocity

> = =J(q)q

» v =FT"J(q)

| 2
>
>
| 2
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Statics analysis

» Conservation of power: (power at the joints) = (power to move the robot) + (power
at the end-effector)

> Static equilibrium: no power is used to move the robot, i.e. no motion
> (power at the joints) = (power at the end-effector)
» rTg=F'"a

T joint torques

q joint velocities

F' end-effector force

x end-effector velocity

> = =J(q)q

> T =F'J(q)

> r=J(q)'F

| 2
>
>
| 2
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Statics - compensating external force

» Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?
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Statics - compensating external force

» Consider external force applied to the end-effector is —F'.
> How to compute joint torques s.t. robot is static?
> Text = J(q)TF
> end-effector needs to generate force F' to compensate external —F
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Statics - compensating external force

» Consider external force applied to the end-effector is —F'.
» How to compute joint torques s.t. robot is static?
> Text = J(q)TF
> end-effector needs to generate force F' to compensate external —F
> this equation assumes gravity does not act on a robot
T = Tex + Ty
> T, compensates gravity acting on a robot
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Statics - compensating external force

» Consider external force applied to the end-effector is —F'.
» How to compute joint torques s.t. robot is static?
> Text = J(q)TF
> end-effector needs to generate force F' to compensate external —F
> this equation assumes gravity does not act on a robot
T = Tex + Ty
> T, compensates gravity acting on a robot

v

For Panda robot, you can directly command Text
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Force caused by given torques

» If .J is invertible (when it is invertible?)
> F=J(q) 't
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Force caused by given torques

» If .J is invertible (when it is invertible?)
> F = J(q)_TT
» Redundant robots

» even for fixed end-effector we can have internal motion
» static equilibrium assumption is not valid — dynamics needed
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Force caused by given torques

» If .J is invertible (when it is invertible?)
> F=J(q) "
» Redundant robots
> even for fixed end-effector we can have internal motion
» static equilibrium assumption is not valid — dynamics needed
» Under-actuated robots
> fixed end-effector will immobilize the robot
> robot cannot actively generate forces in null-space of J: ker(J ") = {F |JTF = 0}
> however, robot can resist external force in the null-space W|thout moving
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Force caused by given torques

» If .J is invertible (when it is invertible?) =
> F=J(g)"
» Redundant robots

> even for fixed end-effector we can have internal motion
» static equilibrium assumption is not valid — dynamics needed
» Under-actuated robots
> fixed end-effector will immobilize the robot
> robot cannot actively generate forces in null-space of J: ker(J ") = {F |JTF = 0}

> however, robot can resist external force in the null-space W|thout moving
> red arrow shows null-space

Rt
fhcs
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Force caused by given torques

» If .J is invertible (when it is invertible?) /
T

> F=J(q) "
» Redundant robots
> even for fixed end-effector we can have internal motion
» static equilibrium assumption is not valid — dynamics needed
» Under-actuated robots
> fixed end-effector will immobilize the robot
> robot cannot actively generate forces in null-space of J: ker(J ") = {F |JTF = 0}
> however, robot can resist external force in the null-space W|thout moving
> red arrow shows null-space
» Singularities (square J, but non-invertible)
» non-zero null-space
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Force ellipsoid

> How easy is to generate force in a given direction.
> Eigen analysis of (JJ )7}
> Blue - manipulability ellipsoid (i.e. JJT)
> Green - force ellipsoid (i.e. (JJT)™1)
> Easy motion in a direction — difficult to compensate force in that direction
» Close to singularity:
> area of manipulability ellipsoid — 0
> area of force ellipsoid — oo
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Summary

» Differential kinematics

> Jacobian and its properties

» How to compute Jacobian

» Manipulability ellipsoids

> How to measure distance to singularity
> Statics

> Static equilibrium relation of joint torques and task-space forces
» Force ellipsoids
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Laboratory

» Implementation of jacobian computation for planar manipulator

» Finite difference method
» Analytical method

» Generation of movement in null-space
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