- ||CTU
Rl

UNIVERSITY
IN PRAGUE

Robotics: Path and trajectory generation

Vladimir Petrik

vladimir.petrik@cvut.cz

10.11.2024

Motivation: pick a cube

Detect where the cube is in SE(2) , SE(3)
Define handle(s) w.r.t. cube

Compute gripper pose

Solve IK (select one of the solutions, how?)
Send robot to selected joint-space configuration

What motion will robot follow?

» depends on the robot
» linear interpolation in joint space is common

» what is motion? |

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 2 /38

vvyvyVvVyyvyy

Motion

> Path

> Geometrical description (sequence of configurations)

> No timestamps, dynamics, or control restrictions

» q(s) € Cree, s € [0,1]

» Main assumption is that trajectory can be computed by postprocessing
» Trajectory

» Robot configuration in time
> g(t) € Crree, t € [0,T]

1 S Ny

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 3/38

Grasping path

» Let us focus on path first
> |s grasping path safe? Depends on the start configuration.

I]_—_X n I]F_

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 4 /38

Pre-grasp pose

> We can define pre-grasp pose

>

VvV VYVYyYy

>

e.g. 5 cm away from the object, w.r.t. handle

how to define 5 cm away? By design of handle.

fix handle orientation to have z-axis pointing towards the object
gripper orientation to have z-axis pointing out of gripper

grasp pose Try
if gripper Tre equals Try, object is grasped
pre-grasp pose Trp = TRHTI(_(Spre_grasp)

> Is path from pre-grasp to grasp safe if dpre grasp is small?

> |s path from pre-grasp to grasp safe if dpre grasp is large?

ﬂ?'?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 5/ 38

Pre-grasp pose

.]j n ;7 l]\——

é Robotics: Path and trajectory generation

/%J‘% Vladimir Petrik 6 /38

Interpolation in joint space

> Also called straight-line path, point-to-point path
> Start gstart

> Goal ggeal

> q(s) = Gstart + 5(@goal — Gstart), s € [0,1]

> Easy to compute, well defined

» What is the motion of the gripper?

> likely not straight-line (for revolute joints)
> combinations of circular paths (for revolute joints)

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 7 /38

Interpolation in joint space

1.0 1.0

: 0.0 : 0.0

—05 -0.5

~10 -1.0
-1.0 —-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

%%‘ Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik 8 /38

Interpolation in SE(2) and SE(3)

> Straight-line path in task space
» position £(s) = tstart + S(tgoal — tstart), s € [0,1]
> rotation R(s) = Retart exp (s1og(ReaiRgoal)) , s € [0, 1]

_
-

QL%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 9 /38

Joint-space path from task-space path

» Compute q(s) from Tra(s)
> Solve IK for each s and pick the first solution of IK?

> we did not define what is first solution of IK
> let us use the closest solution of 1K
> can it happen that closest solution is not close enough? yes, let us see an example

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 10 / 38

SCARA robot

| 2
» Analyze kinematics of SCARA
» Structure RRPR

> Self-collisions avoided by joint limits

> +85°

> +120°

> (—330 mm, 5 mm)
> (-20°,1080°)

» Compute FK and IK in zy-plane

285—»+—250 %2007

577

2 Robotics: Path and trajectory generation
Vladimir Petrik

11/ 38

SCARA robot workspace

0.4

0.2 4

E o0+
>

_0.2 -

_0.4 -

T T T T T
-0.4 -0.2 0.0 0.2 0.4
X [m]

/QL?Q/‘ Robotics: Path and trajectory generation
WF

Vladimir Petrik 12 / 38

SCARA robot IK

0.4 4

0.2

0.0

y[m]

-0.2

-0.4

-02 -01 00

y[m]

y[m]

T T
01 02 03 04
x [m]

T T T T T
-02 -01 00 01 02 03 04
x [m]

feRe

Robotics: Path and trajectory generation

Vladimir Petrik

13/ 38

Task-space interpolation

0.4

0.2

0.0 A

y [m]

—0.2 1

—0.4

—-0.4 -0.2 0.0 0.2 0.4
x [m]

/"\%?.‘?\%é Robotics: Path and trajectory generation

Vladimir Petrik 14 / 38

Task space interpolation

> Not all solutions of IK are available everywhere
> We need to resolve jumps in configuration space
> To change the configuration we need to pass via singularity

» The task-space interpolation can be used for pre-grasp to grasp path

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 15 / 38

SCARA effect of the last link

0.4

0.2 §

E o0
=

_0.2 -

70.4 -

T T T T T
-0.4 —-0.2 0.0 0.2 0.4
X [m]

é Robotics: Path and trajectory generation

/%r%) Vladimir Petrik

16 / 38

Trajectory from path

» Time scaling s(t), t € [0,T], s:[0,T] — [0, 1]

> A path and time scaling defines trajectory g(s(t))
» Derivations:

da ¢

ds
> acceleration: ¢ = 995 + 995

> velocity: ¢ =

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 17 / 38

Straight-line path time scaling

» Path

> pOSitiOﬂI q(s) = qstart + S(qgoal - qstart), ERS [07 1]

> Ve|0City: q = é(ngaI - qstart)

> acceleration: ¢ = 5(ggoal — Gstart)
» 3rd order polynomial time scaling

> 5(t) = ap + art + ast? + ast?

> 5(t) = ay + 2ast + 3ast?

> constraints: s(0) = 5(0) =0, s(T) =1, $(T)=0

> solution that satisfies constraints: ap =0, a3 =0, as=3/T?%, a3=-2/T°
» Trajectory

2 3
> q(t) = Qstart T (% - %) (ngal - (IStart)
. 2
> Q(t) = (% - 2]%) (qgoal - qstart>

> q(t) = (% - %) (qgoal - qstart)

‘i?.?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 18 / 38

3rd order polynomial time scaling

T t T ¢

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 19 / 38

Straight-line path time scaling

» Maximum joint velocities:
> t=T/2
P Qmax = %(ngal - qstart)
» Maximum joint acceleration:
> t=0andt=T
P Gmax = H%(ngal - QStart)H
» Gmin = — H%(qgoal - QStart)H
» How to use this information?

> check if requested motion T is feasible given the velocity/acceleration limits
» find minimum T such that velocity and acceleration constraints are satisfied

‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 20 / 38

5th order polynomial

» 3rd order polynomial does not enforce zero acceleration at the beginning and end

> infinite jerk (derivative of acceleration)
» can cause vibrations

» We can use 5th order polynomial

s . .
A A
1 15 10 _ |
8T T2V3
0 >
\/T t
> —
T t T t
ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 21 /38

Trapezoidal time scaling

» Constant acceleration phase
» Constant velocity phase
» Constant deceleration phase

> Not smooth but it is the fastest straight-line motion possible

s s . .
14 v ey : \
Ny E i
q : %
Sy -\
1 : \
§ i | \
! o
T ¢ ta T-t, T
QL?Q} Robotics: Path and trajectory generation
/\J Vladimir Petrik 22 / 38

S-Curve time scaling

» Trapezoidal motions cause discontinuous jumps in acceleration
» S-curve smooths it to avoid vibrations

> constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk,
constant deceleration, constant jerk

A
CE T T
2/ | | N,
Ny i | i i €«
> N\
: : ! : ’
(S N T N SR N S S R o U
T t
‘i?-?g‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 23 /38

TAMP: Task and Motion Planning

Motivation

» We know how to plan motion for a robot in robot's configuration space
manually define handle on object

computer grasp and pre-grasp for detected object’s pose

plan motion to pre-grasp

interpolate to grasp, grasp

interpolate to pre-grasp

» plan motion to pre-place, place, release, pre-place

vyvVvyyVvyy

» What if we have many handles? Many objects?
» Manipulation Task and Motion Planning (TAMP)
> simultaneously plan task and motion solutions
> task is the sequence of grasps and placements (discrete space)

> motion is the sequence of robot configurations (continuous space)
» Humanoid Path Planning (HPP) software approach

ﬂ?'?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 25 / 38

Configuration Space

> Multiple grippers connected to robots N
» Environment surfaces that
can be used for placing an object h'\/
> Multiple objects ’S
» multiple handles per object]

» multiple contact surfaces per object

> Configuration space is the set of all possible configurations of all objects and robots
> C=RM xRN ... x SE(3)M
» N, DoF of the ¢-th robot
> M number of objects
> however, not all configuration are feasible
> constraints are used to define feasible configurations

ﬂ?'?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 26 / 38

Constraints

» Object is placed or grasped, i.e. cannot fly
» Placement constraint

> object lies on a surface
» numerical constraints
» object surface is placed on an environment surface

» Grasp constraint
> object is grasped by a gripper
» numerical constraint
» handle frame equals gripper frame

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 27 / 38

Stav (state)

» State is a set of constraints

» Manifold of feasible configurations in the configuration space
> For example, one state can be defined by constraining both objects
> object O, is placed on the surface F; via object surface S
> object O, is grasped by the gripper GGy via handle H;
» How to sample configuration from a state?
» sample from the C
> geometric projection to satisfy all the constraints
> numerical optimization (Newton-Raphson) to satisfy all the constraints

ﬂ?'?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 28 / 38

Sampling from states

R
N he
[/>_\/
’ .
- > Project to state:

» (O, placed on E; via
Sample from C S,

» O, placed on FEs via
S1

N L\“;}

» Project to state:
» (O, grasped by G
via Hy
» O, placed on FEs via
S1

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik

29 / 38

Transitions

> Transition defines motion between two states
> identity transition allows to move robot inside the state
> place transition allows to move object from the gripper to the surface
> grasp transition allows to move object from the surface to the gripper
» Sampling on transitions vs sampling on states
> transition respect constraints from the given state
> for example, identity on place state will not move object (sampling on state can move
object)
> grasp transition is specified to move via pre-grasp
» place transition is specified to move via pre-place

ﬂ?'?;/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 30/ 38

Interpolation on transition

> Interpolate between two configurations but respect constraints of the
states/transition

by L

- n

Grasp Place

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 31/ 38

Constraint graph

» Defines all possible transitions between existing states

» Example: single arm, one object

TR

place (g2_h0_12) -> (p2_s0_e2_s0)

dentity (p2_s0_e2_s0)

grasp (p2_s0_e2_s0) -> (g2_h0_r2)

'deutity (g2_h0_12)

place (g2_h0_12) > (p2_s1_e2 s0) jgrasp (p2_s1_e2_s0) -> (g2_ho_r2)

Conen 2

grasp (p2_s1_e2 s0) -> (g2 hl 12)

lerasp (p2_s0_e2_s0) -> (g2_h1_r2) \place (g2_hl_12) > (p2_s0_e2_s0)

identity (p2_s1_e2_s0)

place (g2_h1 12) > (p2_s1_e2 s0)

'denlity (2 h1 12)

QL?Q} Robotics: Path and trajectory generation
/\J‘ Vladimir Petrik

32 /38

RRT on constraint graph

» Random sampling gand

» sample random transition
> select random existing configuration from the transition source
» sample random configuration from the transition target reachable from beginning

> Nearest neighbor Giree

» node that is closest to g,ang Via interpolation on the transition

> Local planner uses interpolation on transition

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 33 /38

RRT on constraint graph

‘denu‘ty (p0_s0_e0_s0)
grasp (p0_s0_e0_s0) -> (20_h0_r0)splace (g0_h0_r0) -> (p0_sO_e0_s0)

) Didentity (g0_ho_r0)

Isplace (g0_hO_r0) -> (p0_s0_el_s0) \grasp (p0_s0_el_s0) -> (g0_h0_10)

), Didentity (p0_s0_el_s0)

34 /38

%)% Robotics: Path and trajectory generation

/%J'%é Vladimir Petrik

Conclusion

» Configuration space for TAMP is complex
> discrete set of states
P> continuous motion
» encoded by constraint graph that allow us to use RRT
» Usually not used in industry
> task space sequence is hard-coded by programmers
> only motion is found by motion planners (if cannot be hard-coded)

» How to avoid hard-coding? Video demonstration.

ﬂ?-?;‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 35/ 38

TAMP guided by video

@ Multi-step planning @ Final trajectory

(c) Object 6D poses Path optimization

(a) Input video

}
e TN

=7

@ Video preprocessing

(b) Contact states

é Robotics: Path and trajectory generation

Ja8 S
Vladimir Petrik 36 / 38

WF

TAMP guided by video

Time
Goal
@ > Gi Js I ©
o
Go Ga
\ p
Py Ps
py
One object " /E\

regrasp Pregrasp moved
config 1 config 2

Grasp Grasp
on top on side

Example of configuration from the grasp state

Example of configuration at the transition between two states

%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 36 / 38

Summary

» Path/Trajectory

> Grasping path generation

> Interpolation in joint space and task space
» Time scaling parameterization

> TAMP

QL?%‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 37 /38

Laboratory (KN)

> Posledni oraganizované cviceni
» Implementace PRM

» Domaci akol: implementace RRT a Random shortcut [dobrovolnég]

'\L?Q/‘ Robotics: Path and trajectory generation
/\J Vladimir Petrik 38 /38

