
Robotics: Path and trajectory generation

Vladimír Petrík

vladimir.petrik@cvut.cz

10.11.2024



Robotics: Path and trajectory generation
Vladimír Petrík 2 / 38

Motivation: pick a cube

▶ Detect where the cube is in SE(2) , SE(3)

▶ Define handle(s) w.r.t. cube
▶ Compute gripper pose
▶ Solve IK (select one of the solutions, how?)
▶ Send robot to selected joint-space configuration
▶ What motion will robot follow?

▶ depends on the robot
▶ linear interpolation in joint space is common
▶ what is motion?



Robotics: Path and trajectory generation
Vladimír Petrík 3 / 38

Motion

▶ Path
▶ Geometrical description (sequence of configurations)
▶ No timestamps, dynamics, or control restrictions
▶ q(s) ∈ Cfree, s ∈ [0, 1]
▶ Main assumption is that trajectory can be computed by postprocessing

▶ Trajectory
▶ Robot configuration in time
▶ q(t) ∈ Cfree, t ∈ [0, T ]



Robotics: Path and trajectory generation
Vladimír Petrík 4 / 38

Grasping path

▶ Let us focus on path first
▶ Is grasping path safe? Depends on the start configuration.



Robotics: Path and trajectory generation
Vladimír Petrík 5 / 38

Pre-grasp pose

▶ We can define pre-grasp pose
▶ e.g. 5 cm away from the object, w.r.t. handle
▶ how to define 5 cm away? By design of handle.
▶ fix handle orientation to have x-axis pointing towards the object
▶ gripper orientation to have x-axis pointing out of gripper
▶ grasp pose TRH

▶ if gripper TRG equals TRH , object is grasped
▶ pre-grasp pose TRP = TRHTx(−δpre_grasp)

▶ Is path from pre-grasp to grasp safe if δpre_grasp is small?
▶ Is path from pre-grasp to grasp safe if δpre_grasp is large?



Robotics: Path and trajectory generation
Vladimír Petrík 6 / 38

Pre-grasp pose



Robotics: Path and trajectory generation
Vladimír Petrík 7 / 38

Interpolation in joint space

▶ Also called straight-line path, point-to-point path
▶ Start qstart

▶ Goal qgoal

▶ q(s) = qstart + s(qgoal − qstart), s ∈ [0, 1]

▶ Easy to compute, well defined
▶ What is the motion of the gripper?

▶ likely not straight-line (for revolute joints)
▶ combinations of circular paths (for revolute joints)



Robotics: Path and trajectory generation
Vladimír Petrík 8 / 38

Interpolation in joint space



Robotics: Path and trajectory generation
Vladimír Petrík 9 / 38

Interpolation in SE(2) and SE(3)

▶ Straight-line path in task space
▶ position t(s) = tstart + s(tgoal − tstart), s ∈ [0, 1]
▶ rotation R(s) = Rstart exp

(
s log(R−1

startRgoal)
)
, s ∈ [0, 1]



Robotics: Path and trajectory generation
Vladimír Petrík 10 / 38

Joint-space path from task-space path

▶ Compute q(s) from TRG(s)

▶ Solve IK for each s and pick the first solution of IK?
▶ we did not define what is first solution of IK
▶ let us use the closest solution of IK
▶ can it happen that closest solution is not close enough? yes, let us see an example



Robotics: Path and trajectory generation
Vladimír Petrík 11 / 38

SCARA robot

▶

▶ Analyze kinematics of SCARA
▶ Structure RRPR
▶ Self-collisions avoided by joint limits

▶ ±85◦

▶ ±120◦

▶ (−330 mm, 5 mm)
▶ (−20◦, 1080◦)

▶ Compute FK and IK in xy-plane



Robotics: Path and trajectory generation
Vladimír Petrík 12 / 38

SCARA robot workspace



Robotics: Path and trajectory generation
Vladimír Petrík 13 / 38

SCARA robot IK



Robotics: Path and trajectory generation
Vladimír Petrík 14 / 38

Task-space interpolation



Robotics: Path and trajectory generation
Vladimír Petrík 15 / 38

Task space interpolation

▶ Not all solutions of IK are available everywhere
▶ We need to resolve jumps in configuration space
▶ To change the configuration we need to pass via singularity
▶ The task-space interpolation can be used for pre-grasp to grasp path



Robotics: Path and trajectory generation
Vladimír Petrík 16 / 38

SCARA effect of the last link



Robotics: Path and trajectory generation
Vladimír Petrík 17 / 38

Trajectory from path

▶ Time scaling s(t), t ∈ [0, T ], s : [0, T ] → [0, 1]

▶ A path and time scaling defines trajectory q(s(t))

▶ Derivations:
▶ velocity: q̇ = dq

ds ṡ

▶ acceleration: q̈ = dq
ds s̈+

d2q
ds2 ṡ



Robotics: Path and trajectory generation
Vladimír Petrík 18 / 38

Straight-line path time scaling

▶ Path
▶ position: q(s) = qstart + s(qgoal − qstart), s ∈ [0, 1]
▶ velocity: q̇ = ṡ(qgoal − qstart)
▶ acceleration: q̈ = s̈(qgoal − qstart)

▶ 3rd order polynomial time scaling
▶ s(t) = a0 + a1t+ a2t

2 + a3t
3

▶ ṡ(t) = a1 + 2a2t+ 3a3t
2

▶ constraints: s(0) = ṡ(0) = 0, s(T ) = 1, ṡ(T ) = 0
▶ solution that satisfies constraints: a0 = 0, a1 = 0, a2 = 3/T 2, a3 = −2/T 3

▶ Trajectory
▶ q(t) = qstart +

(
3t2

T 2 − 2t3

T 3

)
(qgoal − qstart)

▶ q̇(t) =
(

6t
T 2 − 2t2

T 3

)
(qgoal − qstart)

▶ q̈(t) =
(

6
T 2 − 12t

T 3

)
(qgoal − qstart)



Robotics: Path and trajectory generation
Vladimír Petrík 19 / 38

3rd order polynomial time scaling



Robotics: Path and trajectory generation
Vladimír Petrík 20 / 38

Straight-line path time scaling

▶ Maximum joint velocities:
▶ t = T/2
▶ q̇max =

3
2T (qgoal − qstart)

▶ Maximum joint acceleration:
▶ t = 0 and t = T
▶ q̈max =

∥∥ 6
T 2 (qgoal − qstart)

∥∥
▶ q̈min = −

∥∥ 6
T 2 (qgoal − qstart)

∥∥
▶ How to use this information?

▶ check if requested motion T is feasible given the velocity/acceleration limits
▶ find minimum T such that velocity and acceleration constraints are satisfied



Robotics: Path and trajectory generation
Vladimír Petrík 21 / 38

5th order polynomial

▶ 3rd order polynomial does not enforce zero acceleration at the beginning and end
▶ infinite jerk (derivative of acceleration)
▶ can cause vibrations

▶ We can use 5th order polynomial



Robotics: Path and trajectory generation
Vladimír Petrík 22 / 38

Trapezoidal time scaling

▶ Constant acceleration phase
▶ Constant velocity phase
▶ Constant deceleration phase
▶ Not smooth but it is the fastest straight-line motion possible



Robotics: Path and trajectory generation
Vladimír Petrík 23 / 38

S-Curve time scaling

▶ Trapezoidal motions cause discontinuous jumps in acceleration
▶ S-curve smooths it to avoid vibrations

▶ constant jerk, constant acceleration, constant jerk, constant velocity, constant jerk,
constant deceleration, constant jerk



TAMP: Task and Motion Planning



Robotics: Path and trajectory generation
Vladimír Petrík 25 / 38

Motivation

▶ We know how to plan motion for a robot in robot’s configuration space
▶ manually define handle on object
▶ computer grasp and pre-grasp for detected object’s pose
▶ plan motion to pre-grasp
▶ interpolate to grasp, grasp
▶ interpolate to pre-grasp
▶ plan motion to pre-place, place, release, pre-place

▶ What if we have many handles? Many objects?
▶ Manipulation Task and Motion Planning (TAMP)

▶ simultaneously plan task and motion solutions
▶ task is the sequence of grasps and placements (discrete space)
▶ motion is the sequence of robot configurations (continuous space)
▶ Humanoid Path Planning (HPP) software approach



Robotics: Path and trajectory generation
Vladimír Petrík 26 / 38

Configuration Space

▶ Multiple grippers connected to robots
▶ Environment surfaces that

can be used for placing an object
▶ Multiple objects

▶ multiple handles per object
▶ multiple contact surfaces per object

▶ Configuration space is the set of all possible configurations of all objects and robots
▶ C = RN1 × RN2 . . .× SE(3)M

▶ Ni DoF of the i-th robot
▶ M number of objects
▶ however, not all configuration are feasible
▶ constraints are used to define feasible configurations



Robotics: Path and trajectory generation
Vladimír Petrík 27 / 38

Constraints

▶ Object is placed or grasped, i.e. cannot fly
▶ Placement constraint

▶ object lies on a surface
▶ numerical constraints
▶ object surface is placed on an environment surface

▶ Grasp constraint
▶ object is grasped by a gripper
▶ numerical constraint
▶ handle frame equals gripper frame



Robotics: Path and trajectory generation
Vladimír Petrík 28 / 38

Stav (state)

▶ State is a set of constraints
▶ Manifold of feasible configurations in the configuration space
▶ For example, one state can be defined by constraining both objects

▶ object O1 is placed on the surface E1 via object surface S1

▶ object O2 is grasped by the gripper G1 via handle H1

▶ How to sample configuration from a state?
▶ sample from the C
▶ geometric projection to satisfy all the constraints
▶ numerical optimization (Newton-Raphson) to satisfy all the constraints



Robotics: Path and trajectory generation
Vladimír Petrík 29 / 38

Sampling from states

Sample from C

▶ Project to state:
▶ O1 placed on E1 via

S1

▶ O2 placed on E2 via
S1

▶ Project to state:
▶ O1 grasped by G1

via H1

▶ O2 placed on E2 via
S1



Robotics: Path and trajectory generation
Vladimír Petrík 30 / 38

Transitions

▶ Transition defines motion between two states
▶ identity transition allows to move robot inside the state
▶ place transition allows to move object from the gripper to the surface
▶ grasp transition allows to move object from the surface to the gripper

▶ Sampling on transitions vs sampling on states
▶ transition respect constraints from the given state
▶ for example, identity on place state will not move object (sampling on state can move

object)
▶ grasp transition is specified to move via pre-grasp
▶ place transition is specified to move via pre-place



Robotics: Path and trajectory generation
Vladimír Petrík 31 / 38

Interpolation on transition

▶ Interpolate between two configurations but respect constraints of the
states/transition

Grasp Place



Robotics: Path and trajectory generation
Vladimír Petrík 32 / 38

Constraint graph

▶ Defines all possible transitions between existing states
▶ Example: single arm, one object



Robotics: Path and trajectory generation
Vladimír Petrík 33 / 38

RRT on constraint graph

▶ Random sampling qrand
▶ sample random transition
▶ select random existing configuration from the transition source
▶ sample random configuration from the transition target reachable from beginning

▶ Nearest neighbor qtree
▶ node that is closest to qrand via interpolation on the transition

▶ Local planner uses interpolation on transition



Robotics: Path and trajectory generation
Vladimír Petrík 34 / 38

RRT on constraint graph



Robotics: Path and trajectory generation
Vladimír Petrík 35 / 38

Conclusion

▶ Configuration space for TAMP is complex
▶ discrete set of states
▶ continuous motion
▶ encoded by constraint graph that allow us to use RRT

▶ Usually not used in industry
▶ task space sequence is hard-coded by programmers
▶ only motion is found by motion planners (if cannot be hard-coded)

▶ How to avoid hard-coding? Video demonstration.



Robotics: Path and trajectory generation
Vladimír Petrík 36 / 38

TAMP guided by video

Multi-step planningii Final trajectory

iii Path optimization

i
V

id
e
o
 p

re
p

ro
ce

ss
in

g

(a) Input video

(b) Contact states (c) Object 6D poses

iv

a b



Robotics: Path and trajectory generation
Vladimír Petrík 36 / 38

TAMP guided by video

Pregrasp 
config 2

Grasp 
on top

Grasp 
on side

Pregrasp 
config 1

Example of configuration at the transition between two states Example of configuration from the grasp state

Start Goal

One object 
moved

A

B

C

D E

Time



Robotics: Path and trajectory generation
Vladimír Petrík 37 / 38

Summary

▶ Path/Trajectory
▶ Grasping path generation
▶ Interpolation in joint space and task space
▶ Time scaling parameterization
▶ TAMP



Robotics: Path and trajectory generation
Vladimír Petrík 38 / 38

Laboratory (KN)

▶ Poslední oraganizované cvičení
▶ Implementace PRM
▶ Domácí úkol: implementace RRT a Random shortcut [dobrovolné]


