

Robotics: Dynamics of open chain

Vladimír Petrík

vladimir.petrik@cvut.cz

24.11.2024

Final project

▶ 8 teams evaluated (3 x 20p; 2x 23p; 3x 25p)

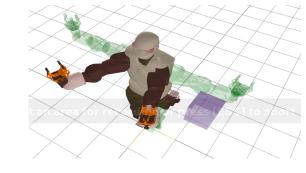
Final project

Motivation

- ► We studied kinematics of open chains
 - Forward kinematics
 - Inverse kinematics
 - Planning of paths/trajectories

Motivation

- ► We studied kinematics of open chains
 - Forward kinematics
 - ► Inverse kinematics
 - Planning of paths/trajectories
- Dynamics of open chains
 - Motion of the robot taking into account forces, torques, and gravity
 - Motion described by the equation of motion
 - ► Can be used to compute control of the robot
 - ▶ It can answer the question when humanoid robot falls down



Motivation



Equation of motion

- Describes the motion of the robot
- Differential equation of the second order
- For robotics, equation of motion has the form $m{ au} = M(m{q})\ddot{m{q}} + h(m{q},\dot{m{q}})$
 - ightharpoonup au vector of joint forces/torques
 - ► *M* mass matrix
 - h vector of Coriolis, gravity and friction terms
 - ▶ h is often in the form $h = C(q, \dot{q})\dot{q} + g(q)$
 - C Coriolis matrix
 - g effect of gravity

► Forward dynamics

► Inverse dynamics

- Forward dynamics
 - Given q, \dot{q} , τ compute \ddot{q}
 - ▶ Why we need it?

► Inverse dynamics

- Forward dynamics
 - ightharpoonup Given q, \dot{q} , au compute \ddot{q}
 - ▶ Why we need it?
 - Used for simulation
 - ► How the robot moves for given forces/torques
 - $\ddot{\boldsymbol{q}} = M^{-1}(\boldsymbol{q})(\boldsymbol{\tau} h(\boldsymbol{q}, \dot{\boldsymbol{q}}))$
- Inverse dynamics

- Forward dynamics
 - ightharpoonup Given q, \dot{q} , au compute \ddot{q}
 - ▶ Why we need it?
 - Used for simulation
 - ► How the robot moves for given forces/torques
 - $\ddot{\boldsymbol{q}} = M^{-1}(\boldsymbol{q})(\boldsymbol{\tau} h(\boldsymbol{q}, \dot{\boldsymbol{q}}))$
- ► Inverse dynamics
 - Given q, \dot{q} , \ddot{q} compute τ
 - ► Why we need it?

- Forward dynamics
 - ightharpoonup Given q, \dot{q} , au compute \ddot{q}
 - ▶ Why we need it?
 - Used for simulation
 - ► How the robot moves for given forces/torques
 - $\ddot{\boldsymbol{q}} = M^{-1}(\boldsymbol{q})(\boldsymbol{\tau} h(\boldsymbol{q}, \dot{\boldsymbol{q}}))$
- ► Inverse dynamics
 - ightharpoonup Given q, \dot{q} , \ddot{q} compute au
 - ► Why we need it?
 - Used for control
 - What forces/torques are needed to move the robot in desired way
 - $\tau = M(q)\ddot{q} + h(q,\dot{q})$

Forward dynamics integration - simulation

- Explicit Euler Integration
- $\dot{\mathbf{q}}_{t+1} = \dot{\mathbf{q}}_t + \ddot{\mathbf{q}}_t \Delta t$
 - $\ddot{\boldsymbol{q}_t} = M^{-1}(\boldsymbol{q}_t)(\boldsymbol{\tau}_t h(\boldsymbol{q}_t, \dot{\boldsymbol{q}_t}))$
 - $ightharpoonup \Delta t$ time step, e.g. 0.001 s (unstable for large time steps)

$$\boldsymbol{\tau} = \begin{pmatrix} 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$oldsymbol{ au} = egin{pmatrix} 1 & 1 \end{pmatrix}^ op$$

Equation of motion derivation

- Lagrangian formulation
 - Kinetic energy
 - Potential energy
 - ► Elegant for simple structures
- Newton-Euler formulation
 - Dynamic equation of rigid body
 - Efficient recursive formulation for forward/inverse dynamics
- ▶ Both formulations lead to the same equation of motion

Lagrangian formulation

- Generalized coordinates q
- ightharpoonup Generalized forces au
- Lagrangian $\mathcal{L}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = \mathcal{K}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \mathcal{P}(\boldsymbol{q})$
 - ightharpoonup Kinetic energy $\mathcal{K}(m{q},\dot{m{q}})$
 - ▶ Potential energy $\mathcal{P}(q)$
- ► Equation of motion

$$oldsymbol{ au} = rac{\mathrm{d}}{\mathrm{d}t} rac{\partial \mathcal{L}}{\partial \dot{oldsymbol{q}}} - rac{\partial \mathcal{L}}{\partial oldsymbol{q}}$$

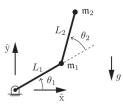
- ► Also called Euler-Lagrange equation with external forces
- Examples:
 - Particle of mass moving vertically in gravitation field
 - Planar robot arm

Simulation of PP

$$oldsymbol{ au} = egin{pmatrix} 0 & 0 \end{pmatrix}^{ op}$$

$$\boldsymbol{\tau} = \begin{pmatrix} 0 & -100y_G \end{pmatrix}^{\mathsf{T}}$$

Equation of Motion - RR



$$\begin{split} \tau_1 &= & \left(\mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) \right) \ddot{\theta}_1 \\ &+ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_2 - \mathfrak{m}_2 L_1 L_2 \sin \theta_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \\ &+ (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2), \\ \tau_2 &= & \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \ddot{\theta}_1 + \mathfrak{m}_2 L_2^2 \ddot{\theta}_2 + \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \\ &+ \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2). \\ \\ M(\theta) &= \left[\begin{array}{c} \mathfrak{m}_1 L_1^2 + \mathfrak{m}_2 (L_1^2 + 2L_1 L_2 \cos \theta_2 + L_2^2) & \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) \\ \mathfrak{m}_2 (L_1 L_2 \cos \theta_2 + L_2^2) & \mathfrak{m}_2 L_2^2 \end{array} \right], \\ c(\theta, \dot{\theta}) &= \left[\begin{array}{c} -\mathfrak{m}_2 L_1 L_2 \sin \theta_2 (2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2) \\ \mathfrak{m}_2 L_1 L_2 \dot{\theta}_1^2 \sin \theta_2 \end{array} \right], \\ g(\theta) &= \left[\begin{array}{c} (\mathfrak{m}_1 + \mathfrak{m}_2) L_1 g \cos \theta_1 + \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2) \\ \mathfrak{m}_2 g L_2 \cos (\theta_1 + \theta_2) \end{array} \right], \end{split}$$

Simulation of RRR

$$\boldsymbol{ au} = egin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{ op}$$

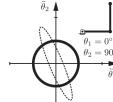
$$\boldsymbol{\tau} = \begin{pmatrix} 10 & 10 & 10 \end{pmatrix}^{\mathsf{T}}$$

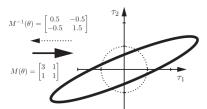
- Kinetic energy

 - Point mass $\frac{1}{2}m\dot{x}^2$ Robot $\frac{1}{2}\dot{q}^{\top}M(q)\dot{q}$

- Kinetic energy
 - Point mass $\frac{1}{2}m\dot{x}^2$
 - ightharpoonup Robot $\frac{1}{2}\dot{q}^{\top}\tilde{M}(q)\dot{q}$
- Mass
 - ightharpoonup Point mass m is positive
 - ightharpoonup M(q) is symmetric positive definite matrix

- Kinetic energy
 - Point mass $\frac{1}{2}m\dot{x}^2$
 - ightharpoonup Robot $\frac{1}{2}\dot{q}^{\top}\tilde{M}(q)\dot{q}$
- Mass
 - ightharpoonup Point mass m is positive
 - ightharpoonup M(q) is symmetric positive definite matrix
- Point mass in Cartesian coordinates
 - ► Independent of direction of acceleration
 - Acceleration is scalar multiplication of force





- Kinetic energy
 - Point mass $\frac{1}{2}m\dot{x}^2$
 - ightharpoonup Robot $\frac{1}{2}\dot{q}^{\top}\tilde{M}(q)\dot{q}$
- Mass
 - \triangleright Point mass m is positive
 - ightharpoonup M(q) is symmetric positive definite matrix
- Point mass in Cartesian coordinates
 - ► Independent of direction of acceleration
 - Acceleration is scalar multiplication of force
- ► Mass matrix in generalized coordinates
 - ► Effective mass depends on the acceleration direction
 - Unit acceleration mapping to torques
 - ► The same magnitude of acceleration can be achieved by different torques (depending on the direction)

End-effector effective mass

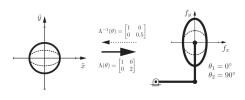
- ► How massy would end-effector feel if we move it by hand? Depends on the direction of force.
 - ► Kinetic energy must be constant: $\frac{1}{2}V^{\top}\Lambda(\boldsymbol{q})V = \frac{1}{2}\dot{\boldsymbol{q}}^{\top}M(\boldsymbol{q})\dot{\boldsymbol{q}}$
 - $lackbox{} \Lambda(q)$ effective mass of end-effector
 - $V = (\dot{x}, \dot{y})^{\top}$ velocity of end-effector

End-effector effective mass

- How massy would end-effector feel if we move it by hand? Depends on the direction of force.
 - ► Kinetic energy must be constant: $\frac{1}{2}V^{\top}\Lambda(\boldsymbol{q})V = \frac{1}{2}\dot{\boldsymbol{q}}^{\top}M(\boldsymbol{q})\dot{\boldsymbol{q}}$
 - $lackbox{} \Lambda(q)$ effective mass of end-effector
 - $V = (\dot{x}, \dot{y})^{\top}$ velocity of end-effector
 - ightharpoonup Jacobian $V = J(q)\dot{q}$
 - $V^{\top} \Lambda(\boldsymbol{q}) V = (J^{-1}V)^{\top} M(\boldsymbol{q}) (J^{-1}V)^{\top} = V^{\top} (J^{-\top}M(\boldsymbol{q})J^{-1}) V$
 - \blacktriangleright End-effector mass matrix: $\Lambda({\boldsymbol q}) = J^{-\top}({\boldsymbol q}) M({\boldsymbol q}) J^{-1}({\boldsymbol q})$

End-effector effective mass

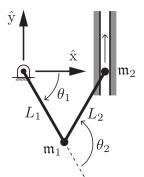
- How massy would end-effector feel if we move it by hand? Depends on the direction of force.
 - ▶ Kinetic energy must be constant: $\frac{1}{2}V^{\top}\Lambda(\boldsymbol{q})V = \frac{1}{2}\dot{\boldsymbol{q}}^{\top}M(\boldsymbol{q})\dot{\boldsymbol{q}}$
 - $lackbox{} \Lambda(oldsymbol{q})$ effective mass of end-effector
 - $V = (\dot{x}, \dot{y})^{\top}$ velocity of end-effector
 - ightharpoonup Jacobian $V=J({m q})\dot{{m q}}$
 - $V^{\top}\Lambda(\boldsymbol{q})V = (J^{-1}V)^{\top}M(\boldsymbol{q})(J^{-1}V)^{\top} = V^{\top}(J^{-\top}M(\boldsymbol{q})J^{-1})V$
 - ▶ End-effector mass matrix: $\Lambda(\boldsymbol{q}) = J^{-\top}(\boldsymbol{q})M(\boldsymbol{q})J^{-1}(\boldsymbol{q})$



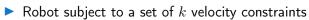


Constrained dynamics

- ▶ Robot subject to a set of k velocity constraints
 - e.g. closed kinematics chain
 - writing with a pen (constant height)
 - $\mathbf{A}(\mathbf{q})\dot{\mathbf{q}} = 0, A \in \mathbb{R}^{k \times n}$

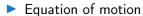


Constrained dynamics



- e.g. closed kinematics chain
- writing with a pen (constant height)

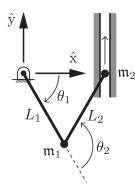
$$A(q)\dot{q} = 0, A \in \mathbb{R}^{k \times n}$$



$$au = M(q)\ddot{q} + h(q,\dot{q}) + A^{\top}(q)\lambda$$
, s.t. $A(q)\dot{q} = 0$

- \triangleright λ vector of Lagrange multipliers
- $lackbox{} A^{ op}(q) \lambda$ force applied against constraints expressed as joint forces/torques
- Lambda can be computed analytically:

$$\lambda = (AM^{-1}A^{\top})^{-1}(AM^{-1}(\tau - h) + \dot{A}\dot{q})$$



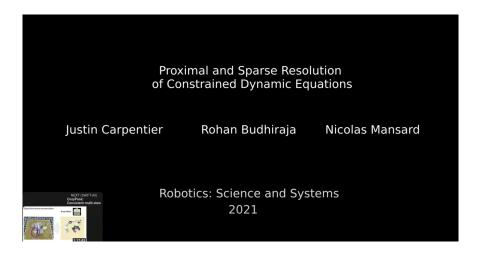
Constrained dynamics tasks

- ► Forward dynamics
 - ightharpoonup first compute λ
 - ightharpoonup compute \ddot{q}

Constrained dynamics tasks

- Forward dynamics
 - ightharpoonup first compute λ
 - ightharpoonup compute \ddot{q}
- ► Inverse dynamics
 - ightharpoonup compute au from given λ and \ddot{q}
 - \triangleright λ defines force against constraints
 - if constraint is in the end-effector space: $J^{\top} f = A^{\top} \lambda$
 - lacktriangle e.g. how much pushing against the table with $m{f}_d$
 - $\lambda = (J^{-\top} A^{\top})^{\dagger} f_d$

Use of constrained dynamics



Summary

- Dynamics of open chains
- ► Equation of motion
 - Lagrangian formulation
 - ► Newton-Euler formulation
- Forward dynamics
- ► Inverse dynamics
- Constrained dynamics