

Vision Language Models in Robotics

Vladimír Petrík

vladimir.petrik@cvut.cz

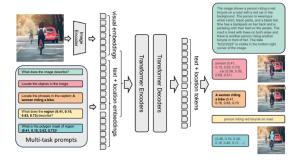
15.12.2025

Motivation: Talking to Robots

- Traditional Pipeline:
 - Object Detector (bounding boxes)
 - Planner (geometry)
 - Controller (inverse dynamics)
- ► Problem: "Pick up the empty cup"
 - ▶ Detector needs the class "empty cup"
 - ► Hard to generalize to new objects
- Solution: Vision Language Models (VLM)
 - Understand semantic concepts
 - Connect pixels to language directly

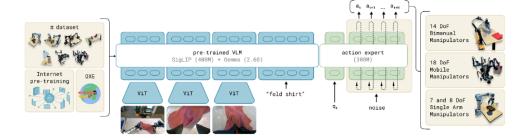
Vision-Language Models (VLM) - High Level

- ► The Core Idea: Giving Large Language Models "eyes".
 - ► Input: Image + Text Output: Text reasoning
 - ► Trained on internet-scale data
- Why is this better than standard detectors?
 - ► Standard Detector: Output is "Box: Cup".
 - ▶ VLM: Output is "The cup is empty and close to the edge."
 - ► They understans **context** and **relationships** crucial for robotics.

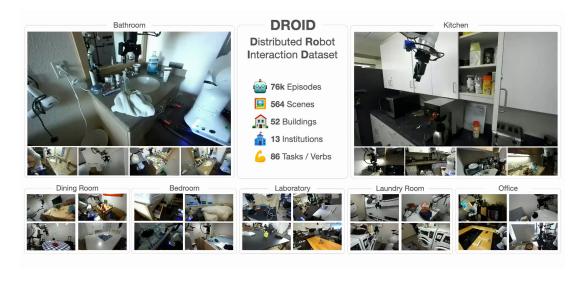


From VLM to VLA (Vision-Language-Action) model

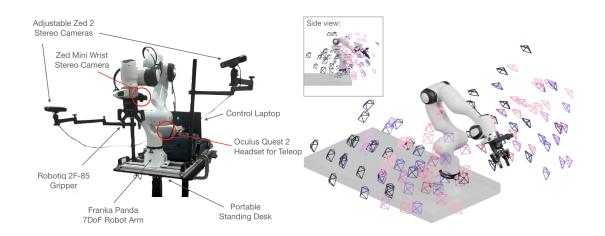
- Robots need to output actions, not just text
- \triangleright π_0 architecture
 - 3 input images (from three cameras)
 - query text (task description)
 - robot configuration q
 - outputs a horizon of robot actions



We need data for training - DROID



DROID



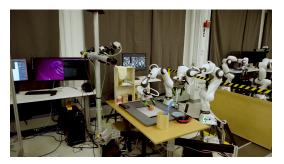
How it works after training



Put the apple into the pot and close the lid.

Put chips into the bowl.

Examples from other platforms - impressive results



Slice the apple.

Take the laundry out of the washing machine.

Reality check

Open the top drawer.

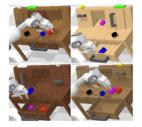
Rotate the marker.

So where are we actually?

Evaluating Vision-Language-Action Models

- ▶ VLAs can handle deformable objects or sliding apples
- ► They still fail on some simple tasks
- Key questions about their performance remain:
 - ▶ What are the failure modes?
 - How well do VLAs understand human language instructions?
 - Can VLAs generalize across diverse objects, scenes and tasks?
- Problem: real-world evaluation is very expensive. . .

Solution: Simulated benchmarks



CALVIN [1]

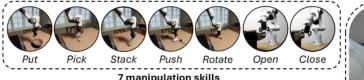
LIBERO [2]

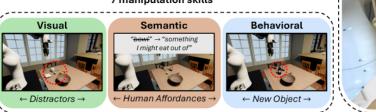
VLABench [3]

COLOSSEUM [4]

- ► Can we trust the results?
- Real-world performance of VLAs does not correspond to simulated performance
 - Visual gap
 - Control gap

REALM: a real-to-sim validated generalization benchmark



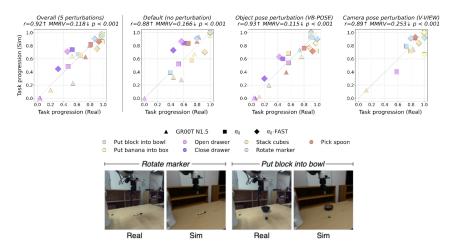


15 perturbations | 3 categories

real-to-sim aligned

Real-to-sim validation

Real-to-Sim Validation



Control alignment

Closing the gap: aligned robot control

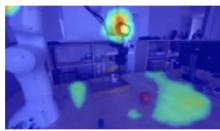
2x speed

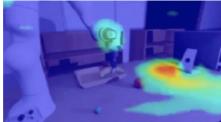
Visual validation

Input image

 π_0 attention maps







REALM benchmark

- We have a trusted simulator 800 rollouts in the real world compared to simulation.
- We can build generalization benchmark via perturbations.
 - Visual perturbations
 - Semantic perturbations
 - Behavioral perturbations

Perturbation	Description & Implementation				
Default	Testing a skill under no specific perturbations.				
Visual					
V-AUG V-SC V-VIEW V-LIGHT	Randomize blur and contrast. Randomly spawn new distractors in the scene. Random shifts to external camera pose. Randomize illumination color and intensity.				
Semantic					
S-PROP S-LANG S-MO S-AFF S-INT	Reference objects based on their properties. Reference similar verbs and remove articles. Reference spatial relationships in the scene. Reference human needs and use cases. Reference facts about the world that typically require knowledge from Internet-scale text data.				
Behavioral					
В -НОВЈ	Randomize manipulated object mass.				
Visual+Behavioral					
VB-POSE VB-MOBJ	Randomize manipulated <i>object pose</i> . Randomize object <i>size</i> and <i>shape</i> .				
Semantic+Behavioral					
SB-NOUN SB-VRB	Reference another known object in the scene. Change the tested skill for another compatible one.				
	Visual+Semantic+Behavioral				
VSB-NOBJ	Sample a new unseen manipulated object.				

Visual perturbations

Closing the gap: aligned robot control

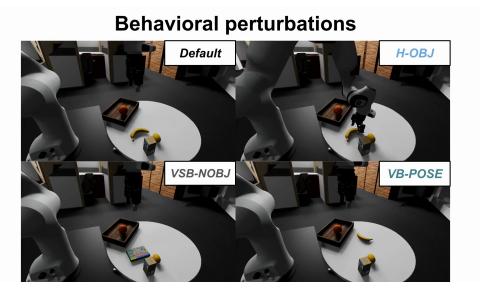
2x speed

Semantic perturbations

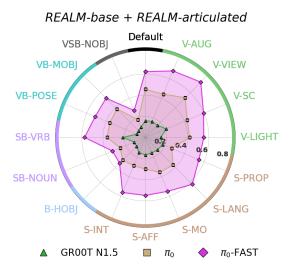
Semantic perturbations

"put the banana into the box"

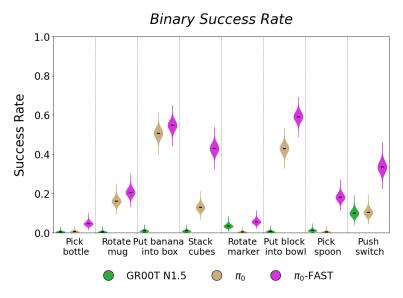
Behavioral perturbations



Performance of VLAs



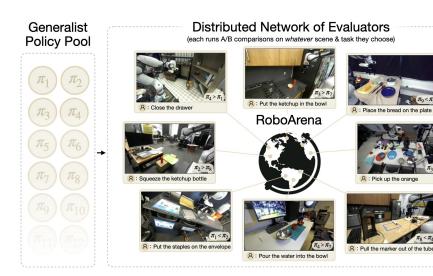
Performance of VLAs



Takeaways for VLAs

- ► High-fidelity simulation with aligned robot control can serve as a valuable proxy for real-world performance
- Noticeable drop in performance under semantic perturbations
- ► High sensitivity to camera view
- All skills are short-horizon
 - Put something into something
 - Wipe a board
- Reliability and robustness have not yet been achieved we need more data

RoboArena



Aggregate pairwise policy preferences

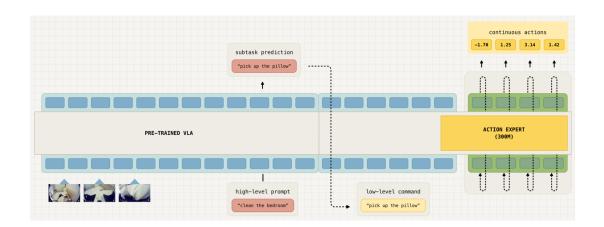
Policy Ranking

*					
Polic	у	Score			
π_4		1750			
π_2		1321			
π_1		1109			
π_9					
π_3					

RoboArena Leaderboard

Rank	Policy	Score	SD	# A/B Evals	Open Source
1	pi05_droid	1867	29.1	490	
2	pi0_fast_droid	1819	27.9	654	
3	paligemma_fast_specialist_droid	1806	28.8	873	✓
4	paligemma_vq_droid	1780	30.3	680	✓
5	paligemma_fast_droid	1744	31.5	882	✓
6	paligemma_diffusion_droid	1652	43.8	678	✓
7	dam	1238	219.3	60	✓
8	pi0_droid	887	32	939	
9	paligemma_binning_droid	707	28.7	566	V

Hierarchical reasoning - π 0.5



Conclusion

- VLAs can revolutionize robotics
 - Active research area
 - Needs data
- ► To remember
 - what is VLA
 - difference between simulated and real-world evaluations
- Topics not covered
 - Other modalities for VLA
 - Chain of thought reasoning for VLA
 - Safety issues
- Do you want to contribute to VLM/VLA research?

Exam

- ► CIIRC: B670
- ► Written (2h):
 - ► Theoretical questions
 - Computation with transformations
 - Kinematics of open kinematic chains
- ► Oral exam (10 minutes)