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Motivation

▶ You know how to control robot to reach the target pose (SE3)
▶ Where to get the pose for the given task?
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6D pose estimation

TCO,M = festimate(I,K,D)

▶ I image
▶ K camera matrix
▶ D database of meshes
▶ M ∈ D mesh of the object
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6D pose estimation

TCO,M = festimate(I,K,D)

▶ I image
▶ K camera matrix
▶ D database of meshes
▶ M ∈ D mesh of the object

6D pose tracking

T i+1
CO = ftrack(I,K,M, T i

CO)

▶ I image
▶ K camera matrix
▶ M mesh
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Why is 6D pose estimation difficult?

▶ Projection, pinhole camera model1

▶ λ
(
u v 1

)⊤
= Kxc

▶ u, v - pixel coordinates
▶ xc - 3D point in camera frame
▶ K - camera matrix

▶ K =

fx 0 cx
0 fy cy
0 0 1


▶ With projection we are loosing

information about depth

1https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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6D pose estimation pipeline

Object detection in image Coarse pose estimation Pose refinement



Object detection



Robotics: Introduction to AI in robotics
Vladimír Petrík 7 / 70

Object detection

▶ Goal: detect object in image
▶ mask
▶ bounding box
▶ object instance id
▶ confidence of prediction

▶ Neural network - Mask R-CNN
▶ needs good training data
▶ annotated images
▶ synthetic images



Robotics: Introduction to AI in robotics
Vladimír Petrík 7 / 70

Object detection

▶ Goal: detect object in image
▶ mask
▶ bounding box
▶ object instance id
▶ confidence of prediction

▶ Neural network - Mask R-CNN
▶ needs good training data
▶ annotated images
▶ synthetic images



Robotics: Introduction to AI in robotics
Vladimír Petrík 8 / 70

Trained Mask R-CNN results
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Trained Mask R-CNN results
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Object detection without retraining

▶ Segment Anything Model (SAM)
▶ segment any object, in any image, with a single click
▶ dataset of 10M images, 1B masks
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SAM results
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SAM results
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Mesh model from segmentation mask - CNOS



CosyPose
Consistent multi-view multi-object 6D pose estimation
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Coarse pose estimation

▶ Input: image crop and mesh model2

▶ Goal: estimate 6D pose
▶ Approach:

▶ render and compare strategy
▶ neural network
▶ initial position is estimated from

camera matrix
▶ initial orientation is identity

▶ Training
▶ synthetic and real data
▶ 10 hours on 32 GPUs

2Image based on: https://arxiv.org/pdf/2204.05145.pdf
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Coarse pose estimation results
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Refiner

▶ The same render-and-compare
strategy

▶ Network learns to
predict small corrections

▶ Evaluated iteratively
▶ Another 10 hours on 32 GPUs
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Refiner results
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Refiner results
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BOP challenge

▶ BOP: Benchmark for 6D Object Pose Estimation
▶ Main benchmark/competition for 6D pose estimation

▶ Tasks on seen objects
▶ Model-based 2D detection/segmentation of seen objects [new in 2022]
▶ Model-based 6D localization of seen objects

▶ Tasks on unseen objects [new in 2023]
▶ Model-based 2D detection/segmentation of unseen objects
▶ Model-based 6D localization of unseen objects
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CosyPose at BOP challenge
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CosyPose variants: FocalPose, FocalPose++
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CosyPose variants: RoboPose
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CosyPose variants: RoboPose
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CosyPose limitations

▶ Training time
▶ For each dataset

▶ 10 hours on 32 GPUs for coarse estimator
▶ 10 hours on 32 GPUs for refiner

▶ Coarse pose estimation often not accurate enough for refinement



MegaPose
6D Pose Estimation of Novel Objects via Render & Compare
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MegaPose - coarse estimation

▶ Re-casted estimation into classification
▶ Poses sampled randomly [original]
▶ Poses uniformly distributed [new]
▶ Allows multi-hypothesis evaluation
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MegaPose - refiner

▶ Multi-view rendering
▶ Render and compare
▶ Iterative refinement
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MegaPose - training data

▶ Generalization to unseen object
achieved by big training dataset
▶ only synthetic dataset
▶ thousands of objects
▶ 2 millions of images

▶ Training
▶ 100 hours on 32 GPUs
▶ trained only once, models are available
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MegaPose - results



HappyPose
Open-source toolbox for 6D pose estimation
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HappyPose

▶ Developed in AGIMUS project (https://github.com/agimus-project/happypose)
▶ Re-implements CosyPose and MegaPose
▶ Packaging, testing, documentation
▶ https://github.com/agimus-project/winter-school-2023/

BOP Challenge 2023 Award
 

The Best Open-Source Method
  

Task 4: Model-based 6D localization of unseen objects

MegaPose
Elliot Maître, Mederic Fourmy, Lucas Manuelli, Yann Labbé

 
8th International Workshop on Recovering 6D Object Pose, ICCV 2023

BOP
2023



Applications
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PCB manipulation based on the estimated pose
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euROBIN taskboard pose estimation



Model-based object pose tracking
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Object pose tracking
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Object pose tracking

▶ Assumptions: object detected, matched with model, initial pose given
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Keypoint matching approach

▶ Model
▶ 3D points on mesh
▶ descriptors of points

▶ Method
▶ 3D-2D matching
▶ minimize reprojection error

▶ Efficient and robust for rich textures
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MegaPose as tracking?
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Region based tracking

▶ Mesh model as input
▶ Probabilistic silhouette

alignment (Newton’s method)
▶ Assumes foreground and background

colors sufficiently different
▶ Robust to occlusion, efficient
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Region based tracker
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Object localization and tracking

▶ Combines slow localization and fast tracker
▶ Goal: fast feedback for control
Perception

Tracker

6D pose localizer

Time delay corrector

Control

OCP
Solver

Ricatti
Linearization

  5 Hz 30 Hz
100 Hz 1 kHz

Input image

Output 6D pose

Buffer
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OLT timeline
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OLT delay
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Control

▶ Optimal control solver

argmin
u0,...,uM−1
x1,...,xM

M−1∑
i=0

li(xi,ui) + lM (xM ) ,

s.t. xi+1 = f(xi,ui), ∀i ∈ {0, . . . ,M − 1},
x0 = x̂ ,

(1)

▶ Ricatti linearization
τ (x) = τ0 +K0(x− x0) (2)
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Costs for optimal control

▶ Tracking cost ∥∥∥log ((TBC(qk)Tk)
−1 TBC(q)Tref

)∥∥∥2 (3)

▶ is solution unique?

▶ Regularizations:

(x− xrest)
⊤Qx (x− xrest) (4)

(u− urest(x))
⊤Qu (u− urest(x)) (5)



Robotics: Introduction to AI in robotics
Vladimír Petrík 44 / 70

Costs for optimal control

▶ Tracking cost ∥∥∥log ((TBC(qk)Tk)
−1 TBC(q)Tref

)∥∥∥2 (3)

▶ is solution unique?

▶ Regularizations:

(x− xrest)
⊤Qx (x− xrest) (4)

(u− urest(x))
⊤Qu (u− urest(x)) (5)



Robotics: Introduction to AI in robotics
Vladimír Petrík 44 / 70

Costs for optimal control

▶ Tracking cost ∥∥∥log ((TBC(qk)Tk)
−1 TBC(q)Tref

)∥∥∥2 (3)

▶ is solution unique?

▶ Regularizations:

(x− xrest)
⊤Qx (x− xrest) (4)

(u− urest(x))
⊤Qu (u− urest(x)) (5)



Robotics: Introduction to AI in robotics
Vladimír Petrík 45 / 70

OLT with control for tracking



Temporal consistency
Temporal consistency for 6D pose estimation
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Temporal consistency
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▶ Use smoothing and mapping with
CosyPose to achieve temporal consistency

▶ Probabilistic smoothing
▶ occlusions
▶ jumps

▶ Bachelor Thesis of Vojtěch Přibáň, published in IEEE RA-L journal
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Approach

χ∗ = argmin
χ

τ∑
k=τ−H

∥∥∥rkC∥∥∥2
ΣC︸ ︷︷ ︸

camera pose factors

+

N∑
i=1

τ∑
k=τ−H

δk,i
∥∥∥rk,iO

∥∥∥2
ΣO︸ ︷︷ ︸

object pose factors

+

N∑
i=1

τ∑
k=τ−H+1

∥∥∥rk−1:k,i
M

∥∥∥2
ΣM︸ ︷︷ ︸

motion model factors
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Covariance model

Decoupled Visibility dependent frame C ′ recall precision

✓ ✓ ✓ 0.571 0.609
✓ × ✓ 0.570 0.608
✓ ✓ × 0.531 0.574
× ✓ N/A 0.483 0.549
× × N/A 0.498 0.542
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Qualitative static objects tracking
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Qualitative dynamic objects tracking
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Robot control architecture

Cosypose

Buffer

Track

Controller

Input image

30 Hz 5 Hz 1 kHz

SAM

State
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Qualitative robot tracking



Geometrical consistency
Geometrical consistency for 6D pose estimation
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Geometrical consistency for object pose estimation from
images

▶ Image based robotic manipulation

▶ Pose estimation from single RGB image
▶ Physical consistency
▶ Bachelor Thesis of Martin Malenický
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Approach

▶ Gradient descent optimization with derived analytical gradients
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Visualization of optimization
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Quantitative experiments

▶ Real BOP datasets:
▶ YCB-V
▶ HOPE-Video
▶ T-LESS

▶ Synthetic datasets:
▶ YCB
▶ T-LESS
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Quantitative experiments

▶ Real BOP datasets:
▶ YCB-V
▶ HOPE-Video
▶ T-LESS

▶ Synthetic datasets:
▶ YCB
▶ T-LESS

real datasets synthetic datasets

MegaPose 0.71 0.76
Ours 0.80 0.94

Ours improovement [%] 12.7 23.7
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Visualization of optimization
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Grasping example

MegaPose Ours



From OC to RL
From OC to RL
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Optimal control - Model Predictive Control

▶ Find optimal control sequence u0,u1, . . . ,uT to minimize cost function J

▶ u∗ = argmin
u0,...,uT−1

J(x0, . . . ,xT ,u0, . . . ,uT ) s.t. xt+1 = f(xt,ut)

▶ xt is state of the system at time t
▶ u is control (torque, velocity, . . . )
▶ xt+1 = f(xt,ut) is dynamics/simulation of the system

▶ Cost function:

▶ J =
T−1∑
t=0

l(xt,ut) + lT (xT )

▶ l is cost function at time t
▶ lT is terminal cost function
▶ T is time horizon

▶ Use numerical optimization to solve the minimization problem
▶ dynamics (f) and costs (l, lT ) needs to be differentiable
▶ what if we do not have gradient of dynamics/costs?
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Reinforcement learning
Environment

Agent

Ac
tio

n

Interpreter

Reward

State

▶ Modeled as Markov Decision Process

▶ Agent interacts with environment
▶ Agent receives reward for each action/state
▶ Goal is to find policy that maximizes reward in time
▶ Stochastic policy: a ∼ πθ(s)

▶ a is action (e.g. torque)
▶ s is state of the system (e.g. joint angles and velocities, or image)
▶ πθ is policy parameterized by θ

▶ Instantaneous reward: r(s,a)

▶ Expected return of the policy: R = Eat∼πθ(st) [
∑

t r(st,at)] s.t. st+1 ∼ f(st,at)

▶ Goal: argmax
θ

R

▶ Compare to MPC: argmin
u1,...,uT

J s.t. xt+1 = f(xt,ut)
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▶ Stochastic policy: a ∼ πθ(s)

▶ a is action (e.g. torque)
▶ s is state of the system (e.g. joint angles and velocities, or image)
▶ πθ is policy parameterized by θ

▶ Instantaneous reward: r(s,a)

▶ Expected return of the policy: R = Eat∼πθ(st) [
∑

t r(st,at)] s.t. st+1 ∼ f(st,at)

▶ Goal: argmax
θ

R

▶ Compare to MPC: argmin
u1,...,uT

J s.t. xt+1 = f(xt,ut)
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Policy gradient

▶ Policy πθ is parameterized by θ

▶ Is used to sample action a given state s: a ∼ πθ(s)

▶ Gradient descent algorithm: θt+1 = θt + α∇θR(πθ)
▶ θ parameterizes policy πθ

▶ α is learning rate
▶ ∇θR(πθ) = Eτ∼πθ

[
∑

t ∇θ log πθ(st)r(st,at)]
▶ expectation over trajectories τ sampled by following policy πθ

▶ in practise expectation is approximated by sampling a lot of trajectories (millions)
▶ why we need stochastic policy?

▶ Can we apply millions of trajectories to real robot?
▶ We need fast and accurate simulation of robots

▶ Gazebo
▶ NVIDIA Isaac Sim
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Example of RL
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Reward shaping
▶ Finding solution to RL problem is hard

▶ sparse reward
▶ local minima
▶ long training time

▶ Reward shaping
▶ add additional reward to the original reward
▶ additional reward is designed to guide learning and avoid local minima
▶ engineering work

▶ Is there a better solution? Learning from demonstration.
▶ Example from high-jump (Fosbury flop - 1968 gold medal)
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Offline reinforcement learning - Learning from
demonstration

▶ Collect data from real robot guided by the operator
▶ Pre-Train policy on collected data
▶ Optionally, fine-tune policy in simulation/ on real robot
▶ How to pre-train policy?

▶ behavior cloning - supervised learning

▶ argmin
θ

N∑
i=1

(πθ(si)− ai)
2

▶ diffusion policy - supervised learning
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Learning from video

▶ Instructional videos are widely available on YouTube
▶ Can we learn from them?

▶ Depends on the task/video, e.g. if human is visible
▶ we can extract human pose from video
▶ we can extract the manipulated object pose
▶ we can extract interaction forces
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Learning tool manipulation from instructional video
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Summary

▶ 6D pose estimation
▶ Object detection
▶ CosyPose
▶ MegaPose
▶ FocalPose
▶ RoboPose

▶ 6D pose tracking
▶ Object localization and tracking for control
▶ Temporal/Geometrical consistency for pose estimation
▶ Reinforcement learning


