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Motivation

> You know how to control robot to reach the target pose (SE3)
» Where to get the pose for the given task? Vision

Static objects reaching

Scene cam:

Robot cam:

Run #2 Run #3

Static objects reaching
Scene cam:
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6D pose estimation 6D pose tracking

TCO: M = festimate(Ia K7 D)

> Ji . .
Image _ TS = frrack(I, K, M, T} )
» K camera matrix

» D database of meshes
» M € D mesh of the object

» [ image
» K camera matrix
» M mesh
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Why is 6D pose estimation difficult?

» Projection, pinhole camera model!
> )\(u v 1)T:ch

> u,v - pixel coordinates

» x. - 3D point in camera frame /

> K - camera matrix optical
fw O cw axis

> K=[0 f ¢
0o 0 1

> With projection we are loosing
information about depth
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https://docs.opencv.org/4.x/d9/d0c/group _ calib3d.html
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6D pose estimation pipeline

Object detection in image Coarse pose estimation Pose refinement
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Object detection



Object detection

» Goal: detect object in image
> mask
» bounding box
> object instance id
> confidence of prediction

» Neural network - Mask R-CNN
» needs good training data

> annotated images
> synthetic images
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Trained Mask R-CNN results
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Object detection without retraining

> Segment Anything Model (SAM)
> segment any object, in any image, with a single click
> dataset of 10M images, 1B masks

Universal segmentation model

valid masks
< confidence
score
—| image |_ _@_) lightweight confidence
encoder mask decoder < score
image 11
o score
image prompt encoder
T
down (v, fa/bg)
sample
’ (1,y1),(x2y2)

T |

mask points  box  text
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SAM results
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SAM results
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Mesh model from segmentation mask - CNOS

1. Onboarding stage 3. Matching stage
NN 4 011
) ) ( Jﬁ\* 0.08 0.11
/ X 0.15
1 U8R /N,
) . 021
Viewpoints CAD models 0.15 0.12
{ - 0.02
1 . 4| Similarity gereg :
: v
Descriptor om leect ID
| wee - Extractor = Confidence score
> - (DINOv2) REterence Scores Scores
Templates descriptors per template per object

2. Proposal stage

——
Proposal P Descriptor o
Extractor = Extractor > E—H

(SAM or FastSAM) (DINOvV2) —
s
Processed Proposal
proposals descriptors

Proposal masks
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CosyPose

Consistent multi-view multi-object 6D pose estimation



Coarse pose estimation

» Input: image crop and mesh model?

» Goal: estimate 6D pose :
» Approach: Input Image /

» render and compare strategy

> neural network

> initial position is estimated from
camera matrix

> initial orientation is identity

3D model M

ek
(R*, )
» Training

> synthetic and real data
» 10 hours on 32 GPUs

%Ilmage based on: https://arxiv.org/pdf/2204.05145.pdf

Renderer

R (M, 0%)

-

Alignment || Ag;
network |[—»

U (0*.80,) > gFT1
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Coarse pose estimation results
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Refiner

» The same render-and-compare

Input Image | Alignment || Ag; . k41
strategy ;eé}vogj = | Ue-.00) g
> NetWOfk |earnS to Renderer | R
H H del
predict small corrections 3D model M R (M,09)

v

k |
Evaluated iteratively (Rk,?k) T _ r
» Another 10 hours on 32 GPUs
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Refiner results
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Refiner results
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BOP challenge

» BOP: Benchmark for 6D Object Pose Estimation
» Main benchmark/competition for 6D pose estimation

> Tasks on seen objects
> Model-based 2D detection/segmentation of seen objects [new in 2022]
» Model-based 6D localization of seen objects

» Tasks on unseen objects [new in 2023]

> Model-based 2D detection/segmentation of unseen objects
» Model-based 6D localization of unseen objects

Nen-publicGT

TO85
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CosyPose at BOP challenge

[+ ]Cosyposs £ccvap ynvmeotViwice 2620 o [ves [dimse |58 Sl i |Rcaeiop]_osssloatelorosl 0asel oserl ol ovial

CosyPose-ECCV20-Synt+Real-1View-ICP

Yann Labbé, justin Carpentier, Mathieu Aubry, Josef Sivic,
CosyPose: Consistent multi-view multi-object 6D pose

estimation, ECCV'20.

'\L?Q/‘ Robotics: Introduction to Al in robotics
/\J‘ Vladimir Petrik 20/ 70



CosyPose variants: FocalPose, FocalPose++

Pose and
Input Image / Alignment Ay focal length
network ||—» update
(I,R) (Section 3.2)

k
Renderer | R U (@20

Rl

3D model M

R (M,0%)

(Rk,gffk)—r — F
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CosyPose variants: RoboPose

Joint angles

RGB image 6D pose

Joint angle 6D os
measurements RoboPose ﬂ

RGB image




CosyPose limitations

» Training time
» For each dataset

» 10 hours on 32 GPUs for coarse estimator
» 10 hours on 32 GPUs for refiner

> Coarse pose estimation often not accurate enough for refinement
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MegaPose

6D Pose Estimation of Novel Objects via Render & Compare



MegaPose - coarse estimation

Input Crop Coarse Pose Estimate
— S E N
e

> Re-casted estimation into classification
» Poses sampled randomly [original]
> Poses uniformly distributed [new]

» Allows multi-hypothesis evaluation

argmax &;

Random Pose Hypotheses

()
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MegaPose - refiner

» Multi-view rendering
> Render and compare

» |terative refinement

Multiview Renderings of Input Pose

Refined Pose Estimate

s B

.|

Refiner Model

Input Crop

TCO,I-
O
E;JA

.
l'Too,s
Teoa Multiple Views of Input Pose
(b)

Rt
fhcs
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MegaPose - training data

> Generalization to unseen object
achieved by big training dataset
> only synthetic dataset
> thousands of objects
> 2 millions of images
» Training
> 100 hours on 32 GPUs
> trained only once, models are available
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MegaPose - results
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HappyPose

Open-source toolbox for 6D pose estimation



HappyPose

» Developed in AGIMUS project (https://github.com/agimus-project/happypose)

» Re-implements CosyPose and MegaPose
» Packaging, testing, documentation
» https://github.com/agimus-project/winter-school-2023/

[ README 5 BSD-2-Clause license Vi

HappyPose

Tests with conda |passing] () Tests with pip [passing] ) Tests with poetry + Coverage |passing| () Build and Deploy book |passing

BOP
2023,

BOP Challenge 2023 Award

The Best Open-Source Method
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Applications



PCB manipulation based on the estimated pose
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euROBIN taskboard pose estimation
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Model-based object pose tracking



Object pose tracking

Initial pose Converged

> Assumptions: object detected, matched with model, initial pose given
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Keypoint matching approach

» Model

> 3D points on mesh
> descriptors of points

» Method

> 3D-2D matching
P> minimize reprojection error

» Efficient and robust for rich textures
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MegaPose as tracking?
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Region based tracking

» Mesh model as input

» Probabilistic silhouette
alignment (Newton's method)

> Assumes foreground and background
colors sufficiently different

» Robust to occlusion, efficient
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Region based tracker

30 Hz
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Object localization and tracking

| 4
| 4

|
|
|
|
|
|
|
|
|
|
|
\

Combines slow localization and fast tracker

Goal: fast feedback for control

Ty
Time delay corrector |
6D pose localizer }Tk;Nf .l

———{Input image [, [§q——————————————

NS

' Control
|

Tracker ]—ﬂbl Output 6D pose 1), ———»{ OCP

Solver

Ko, 7‘0¢

Ricatti
Linearization

~ ® 5Hz ®30Hz

T

q,q9

, @100 Hz @1 kHz

R
e
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OLT timeline

01
Images : : — >
5track
Tracker | H—H—F—H+—H+—"H—F+H—"F+H—"F+H—-F+>
Localizer 5locah /'J
H— —H »
Delay |z - N k
corrector ( A = 1) 6track
/ﬂ%?%‘ SEZ?:;??:PLrL:?:duction to Al in robotics
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OLT delay

CosyPose only OLT (ours)

We visualize the object pose estimation result using
CosyPose and with OLT (ours).
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Control

» Optimal control solver

M-1
arg min Z li(xs, w;) + I (z0r)

UQ,--, UM —1

T1,..., L\ 1=0 (1)
st. xip1 = f(xi,u;), Vi€ {0,...,M — 1},
o — :i',
» Ricatti linearization
T(x) = 10 + Ko(x — o) (2)
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Costs for optimal control

» Tracking cost

1 2
Hlog ((TBC(Qk)Tk)_ TBC((I)Tref> H (3)
> is solution unique?
> Regularizations:
(ZB - mrest)T Qm (w - mrest) (4)
(u— urest(x))—r Qu (U — Urest()) (5)
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OLT with control for tracking

Static objects reaching

Scene cam:

Robot cam:
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Temporal consistency

Temporal consistency for 6D pose estimation



Temporal consistency

» Use smoothing and mapping with gz,
CosyPose to achieve temporal consistency & 2
=]
» Probabilistic smoothing g
-

» occlusions v 2 P SR
. ime [S
> jumps

18 19 20 21

» Bachelor Thesis of Vojtéch Priban, published in IEEE RA-L journal
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Approach

,Z

x* = arg min zT: HrCH -I—Z Z okl
X

_I_Z Z ‘TI;/I—l:k,i

b}
k=r—H i=1 k=r—H i=1 k=r—H+1 M
camera pose factors object pose factors motion model factors
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Covariance model

Decoupled Visibility dependent frame C’  recall precision

v v v 0.571  0.609
v X v 0.570 0.608
v v X 0.531 0.574
X v N/A 0.483 0.549
X X N/A 0.498  0.542
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Qualitative static objects tracking

1
Static scene |
od
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Qualitative dynamic objects tracking

1

Dynamic scene |

@,
\ « i L
\ \FN? ]
SIT77 \ \@y :
d
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Robot control architecture

®5Hz ®1kHz
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Qualitative robot tracking

-

Object tracking
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Geometrical consistency

Geometrical consistency for 6D pose estimation



O1_ 0>
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Approach

» Gradient descent optimization with derived analytical gradients

:ﬁnitial iterationj\: :,\LA: Perception PJE IB: Collision C| M

*
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Visualization of optimization
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Quantitative experiments

> Real BOP datasets: real datasets synthetic datasets
> YCB-V MegaPose 0.71 0.76
> HOPE-Video Ours 0.80 0.94
> T-LESS
: 0
> Synthetic datasets: Ours improovement [%] 12.7 23.7
> YCB
> T-LESS
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Visualization of optimization
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Grasping example

MegaPose Ours
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From OC to RL
From OC to RL



Optimal control - Model Predictive Control

» Find optimal control sequence ug, u1, ..., wr to minimize cost function J
> u*= argmin J(xzg,...,27,Uq,...,ur) S.t. i1 = f(@s, Uyp)

UQ,--,UT -1
> x; is state of the system at time t
> wu is control (torque, velocity, ...)
> x;11 = f(@, us) is dynamics/simulation of the system

» Cost function
> J= Z Uz, ur) + lr(zT)

> [is cost function at time t
» |1 is terminal cost function
» T is time horizon
» Use numerical optimization to solve the minimization problem
» dynamics (f) and costs (I,lr) needs to be differentiable
> what if we do not have gradient of dynamics/costs?
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Reinforcement learning %’5 il
ﬁvironment

» Modeled as Markov Decision Process
C
> Agent interacts with environment R L
> A . : Warg <
gent receives reward for each action/state Interpreter
» Goal is to find policy that maximizes reward in time
> Stochastic policy: a ~ my(s) State \GE)J
> a is action (e.g. torque) .
> s is state of the system (e.g. joint angles and velocities, or image) Agent
» 7y is policy parameterized by 6 gen
> Instantaneous reward: 7 (s, a)
> Expected return of the policy: R = Eq, r,(s,) [2_:7(8t; at)] st. sep1 ~ f(st,a1)
» Goal: argmax R
0
» Compare to MPC: argmin J s.t. @41 = f(x, uy)
ui,...,ur
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Policy gradient

» Policy 7y is parameterized by 6

> |Is used to sample action a given state s: a ~ my(s)

» Gradient descent algorithm: 6,41 = 0, + aVyR(my)
> O parameterizes policy g
> « is learning rate
> VoR(mg) = Ermny [ Vologmo(se)r(se, ar)]
> expectation over trajectories 7 sampled by following policy 7
> in practise expectation is approximated by sampling a lot of trajectories (millions)
> why we need stochastic policy?

» Can we apply millions of trajectories to real robot?

> We need fast and accurate simulation of robots

» Gazebo
» NVIDIA lsaac Sim

ﬂ?'?;/‘ Robotics: Introduction to Al in robotics
/\J Vladimir Petrik 64 / 70



Example of RL

Sake Cup Kiwi Fruit | “Thorn Toy Ball
(5.0 cm, 6.0 cm] [4.9 cm, 7.7 cm] [4.4cm, 4.5 cm]
106 g 122g 2g

Toy Cube | Reaction Ball (L4) Shuttlecock
[4.5cm, 5.7 cm] [5.6 cm, 7.3 cm] [4.5cm, 5.8 cm]

2g 48 Sg
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Reward shaping

» Finding solution to RL problem is hard
> sparse reward
> local minima
> long training time
> Reward shaping
> add additional reward to the original reward
> additional reward is designed to guide learning and avoid local minima
> engineering work
> |s there a better solution? Learning from demonstration.
» Example from high-jump (Fosbury flop - 1968 gold medal)

Fosbury flop

/
u i,\
Je /0
! <
! \
I
1

~

* h N g
Path of center
of gravity

s
e
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Offline reinforcement learning - Learning from
demonstration

> Collect data from real robot guided by the operator
» Pre-Train policy on collected data
» Optionally, fine-tune policy in simulation/ on real robot
» How to pre-train policy?
> behavior cloning - supervised learning
> argmmin 3 (ra(s1) — i)

=1
» diffusion policy - supervised learning
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Learning from video

> Instructional videos are widely available on YouTube

» Can we learn from them?
» Depends on the task/video, e.g. if human is visible

> we can extract human pose from video
> we can extract the manipulated object pose
> we can extract interaction forces

s
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Learning tool manipulation from instructional video

Learning to Use Tools by Watching Videos

Input: instructional video from YouTube Output: tool manipulation skill transferred to a robot
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Summary

» 6D pose estimation
> Object detection
» CosyPose
> MegaPose
» FocalPose
» RoboPose

6D pose tracking

| 2

» Object localization and tracking for control

» Temporal/Geometrical consistency for pose estimation
>

Reinforcement learning
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