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A. Computation of analytic gradients
The proposed approach applies gradient descent to mini-
mize the total cost defined in the main paper in Eq. (1). To
achieve that, we derive analytical gradients for each partial
cost defined in Sec 3.1.

The pose gradient for i-th object, denoted as ∇Pi,
guides the optimization process to maintain the object’s
pose close to the image-based estimate. It is computed as:

∇Pi = ei
THiJi, (1)

where ei represents the residual vector between the opti-
mized pose and the initial pose, defined as ei = [tC,Oi −
t̃C,Oi, log

(
R̃T

C,OiRC,Oi

)
]T ∈ R6, where tC,Oi and t̃C,Oi

are the translation components of the optimized and esti-
mated poses respectively, and log

(
R̃T

C,OiRC,Oi

)
is the log-

arithmic mapping of the rotation difference. The term Hi is
the precision matrix, which is the inverse of the covariance
matrix, ΣCi. Finally, Ji is the Jacobian matrix, given by

Ji =

[
RC,Oi 0

0
∂ log(RÕi,Oi)

∂RÕi,Oi

]
, where RC,Oi is the rotation

matrix from the object Oi to the camera frame C, and the
bottom right component is the partial derivative of the log-
arithmic rotation difference with respect to the rotation. An
analytical formula for the jacobian of the SO(3) log map
can be found in [3], Appendix B,C, Eq. (144), notated as
Jr(θ)

−1.

Collision gradient between two objects, denoted as CA,B,
aims to resolve overlapping shapes by moving them into a
non-colliding state. To obtain the collision gradient ∇CA,B,
we need to differentiate the pairwise collision cost from
Section 3.1 with respect to the pose of the object A (de-
noted as TA). The derivative is:

∇CA,B =
∂CA,B

∂TA
=

1

ncol

∑
Ai∈A

∑
Bj∈B

∂

∂TA
[−d(Ai,Bj)]+ .

(2)

This can be further expressed as:

∇CA,B =
1

ncol

∑
Ai∈A

∑
Bj∈B

{
0 if d(Ai,Bj) ≥ 0

−∂d(Ai,Bj)
∂TA

if d(Ai,Bj) < 0

(3)

In our approach, the derivative of the signed distance,
∂d(Ai,Bj)

∂TA
, is obtained by the randomized smoothing ap-

proach described in [2].

Gravity gradient for object A, denoted as GA, prevents
objects from levitating by encouraging them to move to-
wards static objects in the direction of gravity. It is com-
puted based on the closest convex subpart B of a static ob-
ject and the average positive distance of the movable object
A’s convex subparts to B as defined in Section 3.1. The
gravity gradient is then:

∇GA =
∂GA

∂TA
=

∂

∂TA

(
δA

1

|A|
∑
Ai∈A

[d(Ai,B)]+

)
. (4)

Since δA is a binary variable depending on the collision
state and is assumed not to be directly dependent on the
pose of object A (it depends on the state of other objects),
and |A| is constant, we can rewrite the derivative as:

∇GA =
δA
|A|

∑
Ai∈A

∂

∂TA
[d(Ai,B)]+ , (5)

where the partial derivative of the hinge loss is computed in
the same way as for the collision gradient described above.

B. Additional qualitative results
In Fig. 1 and Fig. 2 we present additional qualitative re-
sults for enforcing physical pose estimation on the YCB-
Video dataset. Please note, that the HOPE-Video dataset
features levitating objects in its initial poses, a characteris-
tic not readily apparent in static visualizations. Therefore,
the static visualization of qualitative results for the HOPE-
Video dataset has been omitted. Please refer to the supple-
mentary video, described below, for a dynamic visualization
of the optimization process on a HOPE-Video scene.
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C. Supplementary video
The first part of the supplementary video demonstrates the
optimization process for scenes from the YCB-Video and
HOPE-Video datasets. YCB-Video scenes, which initially
exhibit object-object and object-scene collisions, are suc-
cessfully resolved by our PhysPose method. For the HOPE-
Video datasets, the initial poses exhibit levitation of objects
above the tabletop; our method successfully mitigates this
issue by attracting the objects downwards towards the scene
geometry.

The second section of the video presents our robotic
grasping experiments, contrasting the performance of the
baseline method [1] with our approach. In the first exper-
iment, the baseline’s insufficient pose accuracy prevents a
firm grasp of objects, as exemplified by the mustard bot-
tle. Conversely, our method, leveraging its refined pose esti-
mates, achieves successful grasps. Subsequent experiments
demonstrate the baseline attempting grasps of objects pre-
dicted to collide with the scene geometry, potentially dam-
aging the detected Cheez-It box. Note the Cheez-It box is
quickly removed by the robot operator just before it would
be damaged by the robot. Our method, however, effectively
avoids these collisions and grasps the Cheez-It box without
incident. Finally, the baseline occasionally predicts objects
as levitating above the surface, leading to grasping attempts
that miss the object entirely. This issue is rectified by our
more accurate pose estimates, as evidenced by our success-
ful grasp of the sugar box.
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[3] Joan Solà, Jeremie Deray, and Dinesh Atchuthan. A micro
lie theory for state estimation in robotics. arXiv:1812.01537,
2021. 1

2



Input image Initial [1] - camera view Initial [1] - side view Ours - camera view Ours - side view

Figure 1. Qualitative results on the YCB-V dataset. We estimate initial object poses from an input image using MegaPose [1]. The
resulting scene, shown from camera and side views, exhibits significant physical inconsistencies, with colliding parts highlighted in red.
Our physical consistency optimization method significantly reduces these collisions, leading to a more plausible scene arrangement. Notice
how our method successfully resolves collisions in the first two rows even though the objects are placed on top of each other.
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Input image Initial [1] - camera view Initial [1] - side view Ours - camera view Ours - side view

Figure 2. Qualitative results on the YCB-V dataset. We estimate initial object poses from an input image using MegaPose [1]. The
resulting scene, shown from camera and side views, exhibits significant physical inconsistencies, with colliding parts highlighted in red.
Our physical consistency optimization method significantly reduces these collisions, leading to a more plausible scene arrangement. Notice
how our method successfully resolves collisions in the first two rows even though the objects are placed on top of each other.
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